Konstrukce tvářecích strojů
Učební texty pro bakalářské i navazující magisterské studium

ZČU v Plzni 2014

Doc. Ing. Milan Čechura, CSc.
Doc. Ing. Jan Hlaváč, Ph.D.

Tato skripta jsou spolufinancována Evropským sociálním fondem a státním rozpočtem České republiky.
Vydala Západočeská univerzita v Plzni, 2015.

Obsah

Konstrukce tvářecích strojů ... 1
Učební texty pro bakalářské i navazující magisterské studium 1
ZČU v Plzni 2014 .. 1
Předmluva .. 5
1 Historický vývoj tvářecích strojů .. 7
 1.1 Závěrem ... 16
2 Základní pojmy z oblasti tváření ... 19
 2.1.1 Základní zákony tváření .. 23
3 Energetická bilance a technologická účinnost pracovního cyklu 29
 3.1 Energetická bilance .. 29
 3.1.1 Účinnost pracovního cyklu ... 31
 3.1.2 Teorie o využití energie výrobním strojem 33
4 Požadavky kladené na tvářecí stroje a jejich vlastnosti 36
 4.1 Technické požadavky ... 36
 4.1.1 Výkonnost .. 36
 4.1.2 Přesnost výroby .. 36
 4.1.3 Provozní spolehlivost a trvanlivost .. 37
 4.1.4 Snadnost obsluhy a ovládání ... 38
 4.1.5 Bezpečnost .. 38
 4.1.6 Statická tuhost ... 39
 4.1.7 Možné způsoby ovlivnění tuhosti stroje 42
 4.1.8 Dynamická stabilita ... 45
5 Základní dělení tvářecích strojů ... 48
 5.1 Podle druhu pohybu výstupního členu stroje 48
 5.2 Podle charakteristických parametrů stroje .. 48
 5.2.1 Porovnání bucharu a lisu z energetického hlediska 51
 5.2.2 Dělení tvářecích strojů dle konstrukčního provedení 51
 5.3 Rámy tvářecích strojů ... 52
 5.3.1 Materiál rámu ... 52
 5.3.2 Dělení rámů tvářecích strojů dle jejich uspořádání 53
 5.3.3 Dělení rámů tvářecích strojů podle jejich výrobní technologie ... 54
 5.3.4 Přístupnost pracovního prostoru stroje 54
6 Základní obecné výpočty ... 56
 6.1 Uzavřený, tvarově symetrický, centricky zatížený rám 56
 6.1.1 Volby průřezu profilů .. 56
 6.1.2 Pevnostní kontrola ... 57
 6.1.3 Stanovení celkové deformace a tuhosti rámu lisu 60
 6.2 Otevřený stojan ... 61
 6.2.1 Stojan s přímou stojinou ... 61
6.2.2 Stojan s lomenou stojinou .. 63
6.2.3 Vliv deformace stojanu na prováděnou technologii ... 63
7 Pohony tvářecích strojů .. 67
7.1.1 Základní dělení .. 67
7.2 Akumulátory energie používané u tvářecích strojů .. 68
7.3 Akumulátory mechanické – setrvačníkové (kinetické) .. 68
7.4 Akumulátory hydraulické (statické) .. 72
7.4.1 Závažový akumulátor .. 72
7.4.2 Pružinový akumulátor ... 73
7.4.3 Plynový hydraulický akumulátor ... 74
7.5 Odběrový diagram ... 78
7.6 Přímý pohon mechanických lisů .. 79
7.6.1 Aktuální výkon ... 80
7.6.2 Motory pro přímý pohon ... 81
7.6.3 Přívod energie pro přímý motor ... 81
7.6.4 Účinnost systému ... 82
8 Hydraulické lisy ... 85
8.1.1 Základní principy hydrauliky .. 85
8.1.2 Základní dělení hydraulických lisů ... 86
8.1.3 Technologické zdůvodnění používání hydraulických lisů .. 86
8.1.4 Základní technické parametry hydraulického lisu ... 87
8.2 Hydraulické lisy kovací ... 88
8.2.1 Zařízení pro zpětný zdvih pohyblivé traverzy lisu CKV ... 90
8.3 Hydraulické lisy vytlačovací ... 90
8.3.1 Lisy pro přímé vytlačování ... 91
8.3.2 Lisy pro nepřímé vytlačování ... 92
9 Mechanické lisy - klikové .. 95
9.2 Pohony klikových lisů .. 96
9.2.1 Řešení klikového mechanismu s nekonečně dlouhou ojnicí .. 97
9.2.2 Kinematika klikového mechanismu ... 98
9.2.3 Rozklad sil na klikovém mechanismu bez uvažování pasivních odporů 101
9.2.4 Rozklad sil na klikovém mechanismu s uvažováním pasivních odporů 104
9.3 VÝSTŘEDNÍKOVÉ LISY .. 105
9.4 KLIKOVÉ LISY ... 106
10 Reference .. 108
Předmluva

Předkládaný text slouží jako výukový podklad pro obor konstrukce výrobních strojů vyučovaný na Katedře konstruování strojů na Fakultě strojní Západočeské univerzity v Plzni.
Kapitola 1 - Historický vývoj tvářecích strojů
1 Historický vývoj tvářecích strojů

Vývoj tvářecích strojů je nerozlučně spjat s vývojem poznání lidské společnosti. Jakmile lidstvo poznalo možnosti využití kovů, začal člověk postupně rozvíjet i hutní technologie (kování a slévání). Vývoj se ubíral od nejjednodušších metod ručního kování s využitím lidské síly, přes primitivní padací buchary, kde je využívána pro tváření kinetická energie padajícího beranu. První zmínky o zpracování železa ručním kováním pochází již od Homéra (druhá polovina 8. stol. př. Kr.)

Obrázek 1 Řecký bůh ohně a kovářství Héfaistos – patron kovářského řemesla (1)

V období přibližně kolem počátku našeho letopočtu se v Řecku začíná využívat šroubu, jako pohonného mechanismu u lisů, konstruovaných nejprve pro lisování vinné révy a olivového oleje.

Obrázek 2 Jednoduché buchary (mechanická kladiva) používané pro tváření kovů na ruční a nožní pohon
V pozdější době se vřetenové lisy začínají využívat jako lisy tiskařské (v 15 století vynalezen J. Gutenbergem) a jako lisy na ražbu mincí (dochovány náčrty Leonarda da Vinci z období kolem roku 1500).

Později, kdy byla potřeba tvářet stále hmotnější kusy, začíná být využívána pro pohon tvářecích mechanismů energie vody. Tam, kde jsou příhodné podmínky, začínají vznikat již ve 14. století ve střední Evropě železářské vodní hamry.

Obrázek 4 Buškův hamr u Trhových Svinů - vodní hamr z 18. stol., funkční technická památka (2)
K dalšímu kvalitativnímu rozvoji bucharů došlo až při zavedení parních a později elektrických pohonů.

V období průmyslové revoluce dochází v Anglii ke zdokonalení a dalšímu rozvoji válcovacích strojů. Např. v roce 1728 zavedl John Payne s majorem Hanburym techniku válcování železného plechu a roce 1754 Henry Cort zavedl techniku válcování profilového železa (použil profilové válce ve válcovací stolici).
Další kvalitativní pokrok v konstrukci tvářecích strojů nastal se zavedením parního pohonu. Začátkem 18. století (1712) sestrojil anglický kovář a vynálezce Thomas Newcomen se svým společníkem Thomase Saverym, vycházející z poznatků Denise Papina, atmosférický parní stroj pro čerpání vody z dolů. Jeho stroj byl vzorem pro pozdější dílo Jamese Watta.

Ruční a vodní pohon dosavadních tvářecích strojů je postupně nahrazován pohonem parním.

Koncem 18. století již jsou uváděny do provozu válcovací stolice na parní pohon. První válcovna v českých zemích byla vybudována v železárnách v Ondřejovicích u Jeseníku v roce 1820.

Do poloviny 19. stol. všechny válcovací stolice pracovaly pouze se dvěma válci - DUA.

Obrázky:

- Obrázek 7 Denis Papin, (1647 – 1712), francouzský matematik (5)
- Obrázek 8 James Watt, (1736 – 1819), anglický mechanik, fyzik a vynálezce prvních parních strojů (6)
- Obrázek 9 Hydraulický lis na ruční pohon J. Bramaha (7)
Blaise Pascal, (1623 – 1662), „rovnoměrné šíření tlaků v kapalinách“, Francouzský matematik, fyzik, filosof (8)

James Hall Nasmyth, (1808 - 1890), Anglický inženýr a vynálezce (vlevo); Nasmythův parní buchar, kresba z roku 1843 (vpravo) (10)

pomocí páry. Buchar sloužil po dobu neuvěřitelných 50 let.

Obrázek 13 Alfred Krupp, (1812-1887), Německý podnikatel v oblasti těžkého strojírenství (11)

Obrázek 14 Parní buchar „FRITZ“ v provozu (11)

Následně v roce 1887 firma Mannesmann koupila Chomutovské železáry, a v roce 1889 bratří Mannesmannové vyrobili poutnickou stolici pro výrobu bezešvých tenkostěnných trubek.

Přelom 19. a 20. století je poznamenán značným rozvojem v konstrukci hydraulických lisů.
V roce 1928 fa. KRUPP v Essenu postavila největší hydraulický kovací lis na světě o pracovní síle 150 [MN] (15000 [t]) - jednalo se o svislý hydraulický kovací lis s horním pohonem a třemi pracovními hydraulickými válci. Zařízení bylo konstruováno pro výrobu vysokotlakých nádob pro chemický průmysl. Tvářeny byly ocelové bloky do hmotnosti 300 [t].

V roce 1951 byl v Německu postaven hydraulický lis o síle 300 [MN]. Později byly provedeny modely lisů o síle 500 a 750 [MN].

Jako reakce a Německý lis, byl v roce 1955 byl v USA postaven hydraulický lis pro zápustkové kování LOEWY 500 MN. Jeho pohon je realizován devíti válců o průměru cca 1,2 m. Lis slouží pro potřeby leteckého a zbrojařského průmyslu.
V letech 1971 až 1973 byl na bývalé Vysoké škole strojní a elektrotechnické - VŠSE (předchůdce Západočeské univerzity v Plzni), Fakultě strojní ve spolupráci s TS Škoda Plzeň proveden konstrukční návrh lisu o síle 1000 [MN], při tlaku pracovní kapaliny 50 [MPa]. Toto konstrukční řešení bylo realizováno firmou Uralmaš v Rusku, avšak při použití pracovního tlaku 32 [MPa] a celkové pracovní síle 750 [MN].
V současné době si hydraulické lisy vydobyly monopolní místo, v některých technologiích jsou zcela nezastupitelné. Zvláště pokud se jedná o kování velice rozměrných a hmotných výkovů. Konstruktéři se zabývali myšlenkami na zkonstruování lisů o pracovní síle až 5000 [MN]. Limitující v současné době není ale velikost hydraulického lisu, i když konstrukce takto velkých lisů mají svá specifika, ale zhotovení potřebně velkého polotovaru (ingotu), ze kterého je výrobek kován.

1.1 Závěrem

Z předcházejícího je zřejmé, veškerý pokrok a vývoj tvářecích strojů, tak jako i ostatních strojů je dán společenskou poptávkou, a objednávkou. Na základě toho nejdříve dochází k navrhování největšího technologického zpracování výrobku, a v návaznosti na to k návrhu zařízení, které by mělo být schopno uvedenou technologii realizovat. Často se však stává, že v dané historické době technika není na takové výši, aby bylo možno požadavky technologie splnit (limitovaná hmotnost ingotů, nedostatečné energetické manipulační a dopravní prostředky, atd.) a proto každému historickému období jsou charakteristické takové výrobní prostředky, které odpovídají stavu rozvoje a poznatkům stávající lidské generace.

Jak je dále z předcházejícího patrné, přístup ke konstrukci tvářecích strojů se v průběhu vývoje lidské společnosti mění. Nejprve se člověk snažil zvládnout technickou stránku navrhovaného zařízení. Snažil se navrhnut takové konstrukční řešení, aby stroj vykonával to, co od něj požadoval. Teprve následně si konstruktér začíná všimávat dalších věcí, dnes pro zdárný prodej strojů samozřejmých, jako je např. bezpečnost práce, ergonomie, design, hygiena, ekologie. S kvalitativním rozvojem elektrických, hydraulických a pneumatických pohonů, včetně moderních řídicích systémů a nových
tvářecích technologií, dochází i ve vývoji tvářecích zařízení ke značným kvalitativním změnám.

Pracoviště se postupně začínají mechanizovat a v pozdější době automatizovat. Tvářecí stroje se stávají součástí automatizovaných technologických pracovišť.

Většinou již nejsou navrhovány jednotlivé tvářecí stroje, ale kompletní tvářecí systémy (multitechnologická centra), pokud možno plně automatizované.
Kapitola 2 - Základní pojmy
2 Základní pojmy z oblasti tváření

Výrobní stroje zpracovávají materiál nebo polotovar co do jeho objemu a tvaru bez změny podstaty hmoty.

Hlavními představiteli výrobních strojů jsou: - Obráběcí stroje - Tvářecí stroje

Obráběcí stroj je výrobní stroj, který dává výrobku žádaný geometrický tvar a jakost povrchu oddělováním materiálu ve formě třísek řezným nástrojem.

Tvářecí stroj - strojní zařízení, které zpracovává materiál tvářením nebo střiháním za studena nebo za tepla mechanickým přetvořením

Tváření – výrobní proces, při němž se mění tvar zpracovávaného materiálu působením vnější síly

Mechanickým přetvořením je myšleno také dělení materiálu střiháním, lámáním, případně drcením.

Tvéření za studena (platí především pro Fe a jeho slitiny) je definováno jako tváření pod rekristalyzační teplotou materiálu, přibližně odpovídá hodnotě pod 30% teploty tání tvářeného materiálu. Ve většině případů se zvýšují mechanické vlastnosti a klesá tažnost. Výhodou je vysoká přesnost tváření, kvalita povrchu a zlepšování vlastností zpevněním. Nevýhodou je nutnost použít velkých tvářecích sil.

Tváření za poloohřevu představuje kompromis mezi tvářením za studena a za tepla.

Tváření za tepla probíhá nad rekristalyzační teplotou tvářeného materiálu, dochází k rekristalyzaci. Výhodou je, že k tváření stačí síly až desetkrát menší, než u tváření za studena. Nevýhodou je povrch nekvalitní vlivem okuření.

Tváření objemové je charakteristické tím, že deformace nastává ve směru všech tří os souřadného systému. Nejčastější způsoby jsou válcování, kování (zápustkové, volné), protlačování, vytlačování, tažení, a další.
Tváření plošné je charakteristické tím, že převládají deformace ve dvou osách souřadného systému. Nejčastější způsoby jsou tažení, obýbaní a střihání.
Tvárnost (elasticita) – schopnost materiálu nevratně měnit tvar bez makroskopického porušení.

Přetvárná pevnost $\sigma_p\,[\text{Pa}]$ - jedná se o napětí, při kterém dojde ke tváření materiálu (vzájemný pohyb částic při velmi malých rychlostech, pohybu nebrání žádné vnější síly (neuvázuje se tření); teoretická hodnota). Je přibližně rovna mezi kluzu materiálu. U všech kovů se mění s teplotou – pro čisté kovy platí, že čím vyšší teplota, tím je nižší přetvárná pevnost.

Přetvárný odpor $K_d\,[\text{Pa}]$ - odpor, který klad materiál při tváření. Je větší než přetvárná pevnost a to hlavně o odpory vzniklé třením materiálu o povrch nástroje a o odpory vznikající při větších rychlostech tváření.

Závisí na:
- tvářecí teplotě $t\,(^\circ\text{C})$ – $t \uparrow \ K_d \downarrow$
• poměrné rychlosti tváření – $\varphi' \uparrow$ $K_d \uparrow$
• velikosti tření mezi nástrojem a tváreným materiálem – $f \uparrow$ $K_d \uparrow$
• stavu napjatosti v materiálu
• stupni deformace
• rozměru a tvaru tvářeného materiálu

Pro jednoduchou tvářecí operaci pěchování válečku lze přetvárný odpor vyjádřit například dle Siebelova vztahu:

$$K_d = \sigma_p \cdot \left(1 + \frac{f}{3} \frac{d}{h}\right) [MPa]$$

Kde:

- f – součinitel tření mezi tváreným materiálem a nástrojem (pro ocel 0,3 až 0,5)
- d – průměr pěchovaného válečku [m]
- v – výška pěchovaného válečku [m]

Tabulka 1 Přetvárný odpor oceli při různých teplotách a různé poměrné rychlosti tváření (19)

<table>
<thead>
<tr>
<th>Typické druhy ocelí</th>
<th>Pěchovačí poměr (obr.1) h_o/h_1</th>
<th>Přetvárný odpor v N/mm² (MPa)</th>
<th>900°C</th>
<th>1000°C</th>
<th>1100°C</th>
<th>1200°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uhlíková ocel 0,15% C</td>
<td>1,1</td>
<td>121</td>
<td>140</td>
<td>160</td>
<td>100</td>
<td>120</td>
</tr>
<tr>
<td>II</td>
<td>1,35</td>
<td>168</td>
<td>185</td>
<td>210</td>
<td>240</td>
<td>131</td>
</tr>
<tr>
<td>III</td>
<td>1,65</td>
<td>173</td>
<td>200</td>
<td>225</td>
<td>232</td>
<td>130</td>
</tr>
<tr>
<td>IV</td>
<td>2</td>
<td>150</td>
<td>205</td>
<td>213</td>
<td>258</td>
<td>115</td>
</tr>
<tr>
<td>Uhlíková ocel 0,56% C</td>
<td>1,1</td>
<td>140</td>
<td>160</td>
<td>210</td>
<td>240</td>
<td>102</td>
</tr>
<tr>
<td>II</td>
<td>1,35</td>
<td>173</td>
<td>205</td>
<td>250</td>
<td>280</td>
<td>125</td>
</tr>
<tr>
<td>III</td>
<td>1,65</td>
<td>175</td>
<td>210</td>
<td>250</td>
<td>286</td>
<td>120</td>
</tr>
<tr>
<td>IV</td>
<td>2</td>
<td>160</td>
<td>195</td>
<td>240</td>
<td>283</td>
<td>110</td>
</tr>
<tr>
<td>Štěrková ocel 0,15% C 0,59% Cr 2,45% Ni 0,59% Mo</td>
<td>1,1</td>
<td>152</td>
<td>185</td>
<td>220</td>
<td>265</td>
<td>200</td>
</tr>
<tr>
<td>II</td>
<td>1,35</td>
<td>145</td>
<td>192</td>
<td>232</td>
<td>273</td>
<td>212</td>
</tr>
<tr>
<td>III</td>
<td>1,65</td>
<td>140</td>
<td>185</td>
<td>22</td>
<td>265</td>
<td>265</td>
</tr>
<tr>
<td>IV</td>
<td>2</td>
<td>130</td>
<td>160</td>
<td>192</td>
<td>251</td>
<td>180</td>
</tr>
</tbody>
</table>

Měrný přetvárný odpor p - má především praktický význam. Jde o hodnoty příměřené na tvářecích strojích (měří se síla a průměr dotykové plochy nástroje kolmý na výslednici sil). Z těchto hodnot se vypočte průměrný tlak mezi nástrojem a tváreným materiálem:

$$p = \frac{F}{S} [MPa]$$

- F - naměřená síla (N)
- S - kolmý průměr dotykové plochy nástroje s tvářeným kusem (mm²)

Poměrná rychlost tváření φ' - rychlost deformace tvářeného materiálu (není totožná s rychlostí nástroje!). Je dána poměrem rychlosti nástroje (v) k výšce pěchovaného kusu (h).

$$\varphi' = \frac{v}{h} [s^{-1}]$$
Tabulka 2 Směrné hodnoty počáteční rychlosti nástroje a poměrné rychlosti tváření

<table>
<thead>
<tr>
<th>Druh stroje</th>
<th>Rychlost nástroje [m/s]</th>
<th>Poměrná rychlost tváření [1/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>hydraulické lisy</td>
<td>nízká rychlost (lisovací): 0,025 až 0,25</td>
<td>0,01 až 10</td>
</tr>
<tr>
<td>klikové a výstředníkové lisy</td>
<td>zvýšená rychlost (lisovací): 0,3 až 1</td>
<td>4 až 25</td>
</tr>
<tr>
<td>buchary</td>
<td>běžná rychlost (kovací): 4 až 8</td>
<td>40 až 160</td>
</tr>
<tr>
<td>buchary se zvýšenou rychlostí úderu</td>
<td>zvýšená rychlost (kovací): 20 až 40</td>
<td>160 až 640</td>
</tr>
</tbody>
</table>

Rychlosti nástroje do 250 \([m \cdot s^{-1}]\) jsou **vysoké** a větší než 250 \([m \cdot s^{-1}]\) se nazývají **explozivní**.

![Obrázek 29 Vliv poměrné rychlosti tváření na tvar materiálu](image)

Pěchovací poměr (stupeň prokování):
- poměr výšky pěchovaného polotovaru před a po pěchování: \(\frac{h_0}{h_1}\)

![Obrázek 30 Tvařený polotovar před a po deformaci pěchováním](image)

2.1.1 Základní zákony tváření

1. **Zákon konstantního objemu**: objem materiálu před a po tváření je stejný \((V_0 = V_1)\)

\[
a_0 \cdot b_0 \cdot h_0 = a_1 \cdot b_1 \cdot h_1 \rightarrow 1 = \frac{a_1 \cdot b_1 \cdot h_1}{a_0 \cdot b_0 \cdot h_0} = \alpha \cdot \beta \cdot \gamma
\]
2. Zákon odtoku materiálu: při tváření teče materiál cestou nejmenšího odporu

Tvářecí síla - F_0 [N]
Jedná se odporovou sílu působící na nástroj ve směru proti jeho pohybu. Za klidu je tvářecí síla v rovnováze s aktivní sílou pohonu (F), kterou působí nástroj (výstupní člen stroje) na tvářené těleso.

$$F_0 = K_d \cdot S$$

K_d... přetvárný odpor tvářeného materiálu
S... průmět dotykové plochy nástroje, kolmý k hlavní ose tváření
K_d a S se mění v závislosti na dráze nástroje. Tvářecí síla se v průběhu tváření mění.

$$K_{d0} = f(d_0, h_0, t_0) \rightarrow F_0 = K_{d0} \cdot S_0$$
$$K_{d1} = f(d_1, h_1, t_1) \rightarrow F_1 = K_{d1} \cdot S_1$$

$F_1 > F_0$

Derivace tvářecí síly podle dráhy nástroje vyjadřuje odpor tvářeného materiálu proti plastické deformaci – tuhost tvářeného materiálu. Maximální velikost síly je u mechanických a hydraulických lisů omezena velikostí tzv. jmenovité síly lisu F_j[N].

Jmenovitá síla lis - F_j[N]
Jedná se o maximální dovolenou sílu, kterou může výstupní člen tvářecího stroje působit prostřednictvím nástroje na tvářený kus.

Jmenovitá práce lisu - E_j[J]
Maximální množství energie, které je schopen výstupní člen stroje přeměnit na užitečnou práci.

Síla pohonu - F[N]
Jedná se o sílu, která je na stroji vyvolena příslušným pohoným mechanizmem. Například u hydraulického lisu je dána plochou pracovního plunžru (S) a velikostí pracovního tlaku (p).
Tvářecí charakteristika

Jedná se o charakteristiky jednotlivých tvářecích pochodů realizovaných na tvářecích strojích. Popisuje závislost tvářecí síly na dráze výstupního členu tvářecího stroje, která je přibližně přibližně totožná s velikostí plastické deformace tvářeného tělesa. Matematické vyjádření této závislosti tvářecí síly na zdvihu činného členu tvářecího stroje není dobře možné, proto se obvykle zjišťuje experimentálně. Analytickým je lze poměrně jednoduše vyjádřit pro technologickou operaci pěchování zkušebního válečku:

\[F_o(h) = \left(1 + \frac{f}{3} \cdot \frac{d}{(l - h)}\right) \cdot \frac{\pi \cdot d^2}{4} \cdot R_e \quad [N]\]

\(f \) ... součinitel tření mezi nástrojem a tvářeným polotovarem [1],
\(l \) ... délka tvářeného polotovaru [mm],
\(d \) ... průměr tvářeného polotovaru [mm],
\(h \) ... dráha výstupního členu tvářecího stroje [mm].
Obrázek 34 Idealizovaná tvářecí charakteristika technologické operace

\[A_U \text{ ... užitečná práce (J)} \]
\[F_o \text{ ... tvářecí síla (N)} \]
\[F_{om} \text{ ... maximální hodnota tvářecí síly (N)} \]
\[F_{os} \text{ ... střední hodnota tvářecí síly (N)} \]
\[h_u \text{ ... dráha výstupního členu tvářecího stroje (mm)} \]
\[h_{u'} \text{ ... užitečný zdvih výstupního členu tvářecího stroje (mm)} \]

Stupeň vyplnění tvářecí charakteristiky \((K_v) \) – jedná se o poměr využití pracovní kapacity stroje, dané užitečným zdvihem \((h_u) \) a maximální hodnotou tvářecí síly \((F_{om}) \), a mezi skutečně využitou prací, danou plochou pod křivkou průběhu pracovní síly \((A_U) \),

\[K_v = \frac{A_U}{F_{om} \cdot h_u} \]

- lze stanovit také jako poměr mezi střední tvářecí silou a maximální tvářecí silou.

\[K_v = \frac{F_{os}}{F_{om}} \]

Pro střední tvářecí sílu tedy platí:

\[F_s = k_v \cdot F_{max} \]

Obrázek 35 Konkrétní příklad průběhu tvářecí charakteristiky prodlužování (výsledek simulace tváření)

Konkrétní příklady:
Obrázek 36 Příklady tvářecích charakteristik typických tvářecích operací
Kapitola 3 – Energetická bilance
3 Energetická bilance a technologická účinnost pracovního cyklu

3.1 Energetická bilance

Rovnice energetické bilance popisuje celkovou práci potřebnou pro realizaci technologické operace.

\[A_c = A_u + A_z \pm A_d \pm A_g \pm A_a + A_{pm} \]

Celková práce \(A_c \)

Celková práce \(A_c \) na výstupním hřídeli motoru, potřebná ke zdárnému vykonání jednoho pracovního cyklu (realizaci příslušné technologické operace).

Užitečná práce \(A_u \)

Jedná se o práci všech užitečných sil, z nichž podstatnou složkou tvoří tvářecí síly. Je dána plochou tvářecí charakteristiky. Obecně se jedná o práci plastických deformací tvářeného tělesa. Analytickým způsobem lze určit užitečnou tvářecí práci:

\[A_u = \int_{h_0}^{h_u} F_o(h) \cdot dh = k_v \cdot F_{o max} \cdot h_u \]

Obrázek 37 Grafické znázornění užitečné práce \(A_u \)

Ztrátová práce \(A_z \)

Jedná se o práci třecích sil, která je potřebná k překonání všech odporů proti pohybu. Tuto práci je možné vyjádřit (na základě předpokladu nezávislosti odporů proti pohybu na zatížení) jako násobek celkové práce:

\[A_z = \xi \cdot A_c \]

Kde \(\xi \) ... ztrátový součinitel, který je menší než 1.

Práce pružných deformací \(A_d \)

Jedná se o práci pružných deformací všech členů stroje, kde podstatnou složkou část tvoří je deformační práce jeho pracovního prostoru stroje.

\[A_d = 0 \quad \text{za předpokladu, že všechny členy stroje jsou dokonale tuhé} \]

\[A_d > 0 \quad \text{práce je akumulována v jednotlivých zatížených členech} \]

\[A_d < 0 \quad \text{práce uvolněna při odlehčení dříve zatížených členů – vrací se z části zpět do pracovního cyklu jako užitečná práce a z části představuje uvolněnou nevratnou energii, která se přeměňuje v teplo, hluk, chvění.} \]

\[A_d \] se akumuluje v pracovním prostoru zařízení při stoupající síle jako energie:

\[A_d = \frac{1}{2} \cdot F \cdot y_c = \frac{1}{2} \cdot \frac{F}{k_c} \]

Kde \(y_c \) ... celková deformace pracovního prostoru stroje [m]

\(k_c \) ... celková tuhost pracovního prostoru stroje [N · m⁻¹]
Práce tíhových sil A_g
Jedná se o práci všech tíhových sil členů pohonu.

Práce dynamických sil A_a
Jedná se o práci dynamických sil a momentů vznikajících v pohyblivých členech pohonu v důsledku změn jejich kinetické energie (rozběh, brzdění, ...). Tuto práci je nutno do stroje dodat při rozběhu na urychlení všech pohybujících se částí stroje.

Práce pomocných mechanismů A_{pm}
Jedná se o další práce, které se v návrhu pohonu mohou vyskytnout, například se jedná o práce podavačů, vyhazovačů, vyvažovačů, přenášecího ústrojí polotovarů a jiných pomocných mechanismů, jejichž pohon je odvozen od hlavního pohonu stroje.

Případ pro pouze jeden uzavřený pracovní cyklus
Předpoklady:
- Práce A_g a A_a se uvažují v průběhu jednoho pracovního cyklu za nulové
- Práce pružných deformací A_d je nevratná

Na základě výše uvedeného bude celková práce potřebná k vykonání pracovního cyklu: Můžeme energetickou bilanci uvažovat ve tvaru:

$$A_c = A_u + A_z + A_d$$
Obrázek 38 Grafické vyjádření energetické bilance na vřetenovém lise bez uvažování pasivních odporů

Kontrola lisu na tvrdý ráz – bez uvažování pasivních odporů

\[A_c = \frac{A_U + A_d}{0} \rightarrow A_c = A_d \]

\[A_c = A_d = \frac{1}{2} \cdot F_{\text{max}} \cdot \gamma_{\text{stroje}} = \frac{1}{2} \cdot \frac{F^2_{\text{max}}}{k_{\text{stroje}}} \]

\[F_{\text{max}} = \sqrt{2 \cdot A_c \cdot k_{\text{stroje}}} \]

Nutné pojištění stroje proti přetížení (možnost destrukce stroje) - snadná a rychlá výměna pojistek proti přetížení.

3.1.1 Účinnost pracovního cyklu

Technologická účinnost pracovního cyklu

Při stanovení technologické účinnosti jednoho pracovního cyklu vycházíme z níže uvedeného vztahu:Předpoklady:

- Práce \(A_g \) a \(A_d \) se uvažují v průběhu jednoho pracovního cyklu: \(A_g = 0, A_d = 0 \)
- Práce pružných deformací A_d je nevratná
Na základě výše uvedeného bude celková práce potřebná k vykonání pracovního cyklu:
\[A_c = A_u + A_z + A_d \]

Účinnost pohonu η_z
Charakterizuje odpory proti mezi motorem a výstupním členy stroje.
\[A_c = A_u + \xi \cdot A_c + A_d \]
\[A_c (1 - \xi) = A_u + A_d \]
\[(1 - \xi) = \eta_z = \frac{A_u + A_d}{A_c} < 1 \]

Pracovní účinnost η_p
Charakterizuje ztráty vznikající pružením jednotlivých členů pohonu.
\[\eta_p = \frac{A_u}{A_u + A_d} \]

Celková technologická účinnost stroje η_c
Je dána součinem účinnosti pohonu a účinnosti pracovní a je vyjádřena výsledným vztahem:
\[\eta_c = \eta_z \cdot \eta_p = \frac{A_u + A_d}{A_c} \cdot \frac{A_u}{A_u + A_d} = \frac{A_u}{A_c} \]

Celkovou technologickou účinnost tvářecího stroje je možno, s využitím výše uvedeného, vyjádřit pomocí tuhosti stroje (k_{str}) a tvářeného polotovaru (k_p). Pokud neuvažujeme pasivní odpory, výsledný vztah bude:
\[\eta_c = \frac{A_u}{A_c} = \frac{1}{1 + \frac{1}{\frac{1}{2} \cdot k_{str} \cdot k_p}} \]

Pokud tento vztah odvodíme pro technologickou operaci ražení, která je popsána přibližně trojúhelníkovou tvářecí charakteristikou (stupeň vyplnění tvářecí charakteristiky $k_v = \frac{1}{2}$), celková technologická účinnost bude vyjádřena vztahem:
\[\eta_c = \frac{A_u}{A_c} = \frac{1}{1 + \frac{k_p}{k_{str}}} \]

Z tohoto vztahu je patrné že bychom měli usilovat o to, aby stroj vykazoval tuhost (k_{str}) co možná největší a tvářený polotovar (k_p) co nejmenší.

Celková technologická účinnost navrženého tvářecího stroje by měla být větší než 60%.
V praxi je nutno při stanovení celkové tuhosti stroje přiblížit k technologické operaci, která je na něm realizována. Pokud se staví například stroj na ražení mincí, deformace tvářeného polotovaru je velice malá, vykazuje vysokou tuhost. Proto i stroj musí vykazovat vysokou tuhost, abychom dosáhli požadované technologické účinnosti. Pokud je konstruován například stroj na hluboké tažení, kde je veliká deformace polotovaru (malá tuhost polotovaru), můžeme si dovolit také stroj o nižší tuhosti. Proto se tvářecí stroje ve většině případů navrhují pro jednotlivé konkrétní technologie.
3.1.2 Teorie o využití energie výrobním strojem

Při návrhu tvářecích strojů, především lisů a bucharů, je nutné si uvědomit níže uvedené závislosti mezi silou, dráhou a prací. Především to, že síla a práce jsou veličinou navzájem svázány třetí veličinou, kterou je dráha.

\[\eta_c = \eta_z \cdot \eta_p = \frac{A_u + A_d}{A_c} \cdot \frac{A_u}{A_u + A_d} = \frac{A_u}{A_c} \]

Jestliže bude těleso o hmotnosti \(m = 75 \text{kg} \) zavěšeno na laně, bude na lano působit tahová síla o velikosti \(F_0 = 750NF_0 = 750 \text{ N} \). V tomto případě se práce nekoná.

Zvedneme-li těleso do výšky \(h = 1 \text{ m} \) vykoná se práce \(A = 750 \text{J} \). Chceme-li následně tuto práci vyvodit na poloviční dráze \(h/2 = 0,5m, h/2 = 0,5 \text{ m} \), musíme zvětšit původní sílu \(F_0 = 750NF_0 = 750 \text{ N} \) na dvojnásobek: \(F_1 = 1500N, F_1 = 1500 \text{ N} \). V praxi to znamená, že čím je menší plastická deformace tvářeného kusu při dané konstantní velikosti energie pohonného mechanizmu, tím je větší potřebná síla. Nastává nebezpečí poškození nástrojů a v neposlední řadě i strojů.
Graf 1 Závislost síly F na dráze h při konstantní velikosti práce A

U padacích bucharů je tato energie akumulována v padajícím beranu a u mechanických lisů v setrvačníku. U bucharů se při tváření předá veškerá akumulovaná energie a u mechanických lisů jen její potřebná část (nemá dojít k přetížení pohonu).
Kapitola 4 - Požadavky kladené na tvářecí stroje a jejich vlastnosti
4 Požadavky kladené na tvářecí stroje a jejich vlastnosti

Kromě progresivního konstrukčního návrhu jednotlivých komponent a vykazovaných špičkových technologických parametrů musí stroj vykazovat i dokonalé řešení z hlediska ergonomického, estetického, psychologicko-sociologického a ekologického. Potom bude tento nový výrobní stroj konkurenceschopný na domácích i světových trzích.

- **Ergonomická hlediska** – jedná se především o uživatelskou přívětivost, comfort obsluhy a hygienu, tj. čistitelnost zařízení. Ergonomie humanizuje techniku tím, že klade důraz na antropocentrický přístup k řešení výrobních a řídicích systémů.

- **Psychologicko-sociologická hlediska** – přizpůsobení stroje člověku z pohledu psychického. Jedná se, kromě jiného, o morální životnost zařízení a o vytvoření trvalých emotivních vazeb uživatele k výrobku.

- **Estetická hlediska** – do této oblasti patří, kromě jiného, tvarová jednota, barevnost, výrobní provedení, jednota konstrukčního a tvorového řešení a vztah k trendům světového vývoje.

- **Ekologická hlediska** – jedná se například o energetickou a materiálovou náročnost, rizika ohrožení životního prostředí, využití recyklovaných materiálů a fyzickou životnost zařízení. Na toto hledisko je v poslední době kladen stále větší důraz – v EU se řeší problematika ECOdesignu.

- **Marketingová hlediska** – kromě výše uvedeného je také nutné se zaměřit na ekonomičnost konstrukce a provozu tvářecích strojů.

4.1 Technické požadavky

4.1.1 Výkonnost

Závisí na druhu technologické operace a je ovlivněna technologickou úrovní zařízení.

- Potom u většiny lisů a bucharů bude základním měřítkem výkonnosti – počet výlisků (výkovů) za jednotku času.

- U válcovacích zařízení je základním měřítkem výkonnosti – hmotnost vyválcovaného materiálu za jednotku času při dané redukci.

- U technologické operace stříhání – velikost střižné plochy za čas jednoho pracovního cyklu.

- U volného kování na bucharu je možno stanovit výkonnost – práce vykonaná při maximálním počtu úderů za jednotku času.

Možnosti zvyšování výkonnosti:

Dokonalé časově využití pracovního cyklu - zkrakování hlavního času (pracovního)

- zkrakování časů vedlejších

Toto je možné realizovat - zaváděním kontinuálních (nevratných) výrobních metod

- u mechanických lisů zvyšováním otáček pohonného hřídele

- u hydraulických lisů zvyšováním rychlosti pohyblivé traverzy

4.1.2 Přesnost výroby

Jedná se o schopnost stroje přesně vyrábět. Nepřesnost stroje se projeví odchylkou
vyrobku od jeho teoretického bezchybného modelu. Smyslem je především zredukovat co nejvíce dokončovacích operací.

Přesnost výroby je obecně ovlivněna:
- přesností relativní dráhy výstupního členu
- geometrickou přesností činných ploch
- vlastnostmi výchozího polotovaru
- technologickými vlivy

Přesnost tvářecího stroje se posuzuje v zatíženém i nezatíženém stavu.

Duhy přesností výrobního stroje

a) geometrická – vyjadřuje odchylky rozměrů, tvaru a vzájemné polohy těch částí a skupin výrobního stroje, které určují polohu a relativní dráhu nástrojů a výrobku, nebo relativní dráhu činných členů stroje. Tato přesnost se zjišťuje v nezatíženém stavu stroje dle platných norem.

b) kinematická – vyjadřuje chyby ve vazbě pohybů v důsledku výroby a montáže jednotlivých částí stroje. Jsou ovlivňovány jednotlivé kinematické řetězce pro pracovní pohyby jednotlivých uzlů výrobního stroje.

c) nastavení nástroje – na tuto přesnost má vliv:
- velikost nejmenší možné dráhy přestavení (kroku) nástroje (tzn. citlivost nastavení)
- vůle v měřícím a pohybovém mechanizmu
- dynamické vlastnosti pohybového mechanizmu

d) pracovní – zkouší se na vzorovém výrobku, u kterého se proměňují tvar, rozměry a vzájemná poloha ploch. Na pracovní přesnost má vliv především:
- druh zatížení (dílčí poddajnosti výrobního stroje)
- teplota (tepelné dilatace jednotlivých částí výrobního stroje)

4.1.3 Provozní spolehlivost a trvanlivost

Stroj musí být funkčně nezávadný a mít minimální poruchovost.

Spolehlivost

Vlastnost výrobku, nebo jeho součásti (prvku) zajišťující plnění jeho předepsaných funkcí a závisející na:
- bezporuchovost
- životnost
- udržovatelnost výrobku a jeho součástí

Kvantitativní ukazatel spolehlivosti výrobních strojů a zařízení jsou:
- doba bezporuchového chodu (provozu)
- pravděpodobnost poruchy
- funkce spolehlivosti
- hustota poruch
- intenzita či nebezpečí poruchy
- střední doba mezi poruchami

Poruchu může zavinit - nesprávná konstrukce, materiál, nesprávně tepelné zpracování, nesprávný provoz stroje, špatná údržba.
Obrázek 41 Vanová křivka – charakteristický průběh intenzity poruch v rozsahu celého provozního života systému

Bezporuchovost

Vlastnost výrobku zachovat schopnost provozu v předepsaných režimech a stanovených provozních podmínkách.

Životnost

Vlastnost výrobku po dlouhou dobu (s možnými přestávkami v praxi) zachovat schopnost provozu v předepsaných režimech a stanovených provozních podmínkách až do zničení nebo jiného mezního stavu výrobku.

Udržovatelnost

Vlastnost výrobku spočívající v přizpůsobitelnosti k obnově normálního stavu (funkce) výrobku a k udržení technické životnosti výrobku předcházením vad a poruch, jejich zjišťováním a odstraňováním.

Trvanlivost (technická životnost)

Jedná se o celkovou délku bezporuchového chodu (provozu) výrobku za dobu jeho používání až do zničení nebo dosažení jiného mezního stavu.

4.1.4 **Snadnost obsluhy a ovládání**

Musí být zajištěna snadná a jednoduchá obsluha stroje. Ovládáním strojů nazýváme působení na parametry výrobního stroje s cílem vytvořit konečné dílo.

Výsledek: dosáhnout požadovaný tvar, rozměr, kvalitu.

Při konstrukci maximálně dodržovat ergonomická hlediska.

Řízení – je cílevědomá činnost, při které se hodnotí a zpracovávají informace, podle nichž se stroje ovládají tak, aby bylo dosaženo požadovaného cíle. Řízení známe ruční (člověk) a automatické (bez zásahu člověka).

Řízení stroje musí být

- jednoduché a snadné
- rychlé
- spolehlivé
- bezpečné

4.1.5 **Bezpečnost**

- pro člověka
- pro stroj

Na každém tvářecím stroji musí být zákonem předepsaná ochranná zařízení, která

4.1.6 Statická tuhost

Kritérium pro návrh tvaru a rozměrů většiny součástí tvářecích strojů je jejich maximální pružná deformace. Měřítkem odolnosti proti pružným deformacím je tzv. tuhost.

Jedná se především o tuhost - tvářeného polotovaru - nástrojů - pracovního prostoru stroje

Pružnost (elasticita) tělesa – \(k \ [N \cdot m^{-1}] \) – jedná se o takovou schopnost tělesa, že po odstranění vnějšího zatížení se vrátí do původního stavu. Významnou materiálovou konstantou charakterizující pružné chování tělesa je modul pružnosti \(E \ [Pa] \).

Tuhost tělesa – jedná se o odolnost tělesa proti jeho pružné deformaci způsobené vnějším zatížením. Pohybujeme-li se v mezích Hookova zákona, platí, že díl čí tuhost součásti se při změně velikosti vnějšího zatížení nemění, je konstantní.

Obrázek 42 Závislost vnější zátěžné síly na deformaci zatíženého tělesa v mezích platnosti Hookova zákona

Tuhost je zde dána tangentou úhlu, který svírá charakteristika statické tuhosti (přímková závislost mezi vnějším zatížením a deformací, vycházející teoreticky z počátku souřadného systému) od deformační osy.

\[k = tg \gamma = \text{konst} \]

Převrácenou hodnotou tuhosti je poddajnost.

Příklady možného rozdělení tuhostí:
1) podle druhu zatížení

- tuhost v posunutí \[k = \frac{F}{y} \]

Kde \(F \ [N] \) je vnější síla a \(y \ [m] \) je velikost deformace zatíženého tělesa.

Přestože výpočetní vztah pro tuhost obsahuje sílu a deformaci, tak tuhost není na těchto hodnotách závislá – viz následující dosazení pro tah/tlak.

- Vstupní předpoklady
 - Hookův zánok
 - Poměrné prodloužení
 - Napětí v tahu/tlaku

Kde - \(\sigma \ [Pa] \) je normální napětí
- \(\varepsilon \ [1] \) je poměrné prodloužení
- S [m²] je plocha průřezu kolmého na směr zatížení

- Sloučením Hookova zákona a stanovení napětí získáme:
 \[E \cdot \varepsilon = \sigma = \frac{F}{S} \rightarrow F = \frac{E \cdot \varepsilon}{S} \]

- Úpravou vztahu poměrného prodloužení získáme:
 \[\varepsilon = \frac{y}{l_0} \rightarrow y = \varepsilon \cdot l_0 \]

- Dosazením do obecného vztahu tuhost získáme:
 \[k = \frac{F}{y} = \frac{E \cdot \varepsilon}{\varepsilon \cdot l_0} = \frac{E}{S \cdot l_0} \]

- tuhost v natočení \(k = \frac{M}{\varphi} \)
 Kde \(M[Nm]M[Nm] \) je zátěžný moment a \(\varphi[rad]\varphi[rad] \) je velikost deformace v natočení zatíženého tělesa.

2) Podle způsobu zatížení

- tuhost statická
- tuhost dynamická

3) Podle toho, k čemu je vztážena příslušná deformace

- tuhost absolutní (deformace se uvažuje vzhledem k základu)
- tuhost relativní (deformace se vztahuje k jiné části zařízení)
- tuhost dílčí (tuhost jedné součásti stroje – např. tuhost rámu, ojnice, kliky, …)
- tuhost celková (tuhost stroje jako celku)

Pro stanovení celkové tuhosti stroje je nutné vytvořit výpočtový model, kde jsou nahrazeny jednotlivé komponenty stroje pomocí pružin, které jsou řazeny sériově a paralelně. Potom se na základě níže uvedených vztahům stanoví z jednotlivých dílčích tuhostí celková tuhost.

a) pro sériové řazení pružin, kde \(k \) je celková tuhost a \(k_1…n \) jsou jednotlivé dílčí tuhosti.
 \[\frac{1}{k} = \frac{1}{k_1} + \cdots + \frac{1}{k_n} = \sum \frac{1}{k_i} \]

b) pro paralelní řazení pružin, kde \(k \) je celková tuhost a \(k_1…n k_1…n \) jsou jednotlivé dílčí tuhosti.
 \[k = k_1 + \cdots + k_n = \sum k_i \]

Příklad:
Stanovení celkové tuhosti hydraulického lisu. Traverzy uvažovány jako nekonečně tuhé.
Celková tuhost rámu lisu potom bude $k_c = 2 \cdot k_1 + \frac{k_2 \cdot k_3}{k_2 + k_3}$

Kde k_1 je tuhost sloupu lisu

k_2 je celková tuhost hydraulického pohonu

k_3 je celková tuhost nástroje

Příklady některých skutečných charakteristik statické tuhosti pracovního prostoru tvářecího stroje:

Styková tuhost

Závislost mezi vnějším zatížením a deformací je nelineární, neboť se týká plastických deformací makronerovností, posléze mikronerovností, spojených součástí. (například u předepjatého spoje dochází po určité době ke ztrátě předpětí a předepjatý spoj se musí dotáhnout).

Stykovou tuhost je možné vyjádřit jako poměr diferenciálního přírůstku tlaku ve stykové oblasti dp k diferenciálnímu přírůstku deformace stykových ploch (dy):

$$k_s = \frac{dp}{dy}$$

Styková tuhost závisí na:
- Drsnost stykových (kontaktních) ploch
- Velikost předpětí
- Velikost stykových (kontaktních) ploch
4.1.7 Možné způsoby ovlivnění tuhosti stroje

Při navrhování jednotlivých komponent tvářecího troje je nutné si uvědomit, čím je možno tuhost zařízení ovlivnit. Jedná se především o:

1) Geometrii součástí

Možnost ovlivnění tuhosti stroje geometrií součástí je možné prezentovat na vybraných průřezech nosníků. Nosníky jsou srovnány z hlediska jejich vhodnosti k namáhání ohybem nebo krutem.

![Diagram s průřezy s parametry tuhosti](obrazek46)

<table>
<thead>
<tr>
<th>KVADRATICKÉ MOMENTY PRŮŘEZŮ - J_0 [cm^4]</th>
<th>MOMENTY TLIHOSTI U KRUTI J [cm^4]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Obrázek 46 Srovnání průřezů z hlediska jejich vhodnosti k namáhání ohybem nebo krutem.
2) Uložením součástí
Ohybová tuhost nosníku roste lineárně s parametry α, E, J a klesá s třetí mocninou délky nosníku l

$$k = \frac{\alpha \cdot E \cdot J}{l^3}$$

Kde: součinitel zahrnující vliv uložení nosníku
E modul pružnosti materiálu nosníku [Pa]
J kvadratický moment průřezu nosníku [m^4]
$délka$ nosníku [m]

$\alpha = 3$

$\alpha = 48$

$\alpha = 107,3$

$\alpha = 192$

Obrázek 47 Různé způsoby ukotvení nosníku zatíženého osamělou silou

3) Materiálem součástí
Je charakterizováno materiálovými konstantami, jako jsou:
- **Modul pružnosti v tahu** - E[Pa] - je pro daný materiál konstantní v oblasti pružných deformací (platnost Hookova zákona) a je závislý na teplotě.
- **Poissonovo číslo** - μ[1] - je pro daný materiál konstantní v oblasti pružných deformací.
- **Součinitel teplotní roztažnosti** - α[°C$^{-1}$]

Při výběru vhodného konstrukčního materiálu je nutno přihlédnout ještě k níže uvedeným veličinám, jako jsou:
- Mez pevnosti materiálu (mez kluzu, mez únavy), bezpečnost proti plastickým deformacím
- Měrná hmotnost materiálu
- Modul pružnosti materiálu v tahu a ve smyku
- Tlumení materiálu – dynamické chování
- Součinitel tření, tvrdost (tření a velikost opotřebení vodících ploch)
- Minimální vnitřní pnutí – geometrická stabilita
- Součinitel tepelné roztažnosti
- Součinitel přestupu tepla – termoplastické chování
Tabulka 3 Orientační hodnoty materiálových konstant pro některé vybrané materiály

<table>
<thead>
<tr>
<th>materiál</th>
<th>modul pružnosti v tlaku E [x 10^5 MPa]</th>
<th>Poissonovo číslo μ</th>
<th>součinitel tepelné rotačnosti α [x 10^{-6} K^{-1}]</th>
</tr>
</thead>
<tbody>
<tr>
<td>nikl</td>
<td>2,1</td>
<td>0,3</td>
<td>13</td>
</tr>
<tr>
<td>ocel</td>
<td>2,1</td>
<td>0,3</td>
<td>12</td>
</tr>
<tr>
<td>platina</td>
<td>1,9</td>
<td>0,39</td>
<td>9</td>
</tr>
<tr>
<td>měď</td>
<td>1,15</td>
<td>0,36</td>
<td>14</td>
</tr>
<tr>
<td>mosaz</td>
<td>0,99</td>
<td>0,36</td>
<td>18</td>
</tr>
<tr>
<td>zinek</td>
<td>0,91</td>
<td>0,27</td>
<td>36</td>
</tr>
<tr>
<td>zlato</td>
<td>0,78</td>
<td>0,3</td>
<td>14</td>
</tr>
<tr>
<td>stříbro</td>
<td>0,75</td>
<td>0,38</td>
<td>20</td>
</tr>
<tr>
<td>hlinitk</td>
<td>0,72</td>
<td>0,35</td>
<td>23</td>
</tr>
<tr>
<td>cín</td>
<td>0,43</td>
<td>0,33</td>
<td>27</td>
</tr>
<tr>
<td>olovo</td>
<td>0,21</td>
<td>0,52</td>
<td>29</td>
</tr>
<tr>
<td>sklo</td>
<td>0,7</td>
<td>0,25</td>
<td>5 - 8</td>
</tr>
<tr>
<td>litina</td>
<td>0,7 - 1,6</td>
<td>0,25 - 0,27</td>
<td>9</td>
</tr>
<tr>
<td>konstrukční beton</td>
<td>0,15 - 0,4</td>
<td>0,13</td>
<td>10 - 14</td>
</tr>
</tbody>
</table>

Z výše uvedené tabulky je jasné, že například ocel má oproti šedé litině cca dvojnásobný modul pružnosti. Na základě toho, že velikost deformace součásti je úměrná velikosti modulu pružnosti jejího materiálu, vychází součást konstruovaná z ocelolitiny menší než součást ze šedé litiny při zachování jejich stejně tuhosti.

Kromě výše uvedeného mají na volbu materiálu nepochybně vliv také výrobní a ekonomická hlediska, jako jsou: cena materiálu, způsob průmyslové výroby, zpracování a technologie svařování nebo lití.

Několik poznámek závěrem k tuhosti tvářecích strojů:

- Tvářecí stroje konstruované pro technologické operace, při nichž dochází k velkým zdvihům nástroje (velký užitečný zdvih – malá tuhost tvářeného polotovaru) a tvářecí síla zatěžuje souměrně pracovní prostor, mohou mít relativně nižší tuhost pracovního prostoru než stroje, které pracují s malým užitečným zdvihem (vysoká tuhost tvářeného kusu).
- S rostoucí tuhostí pracovního prostoru roste i technologická mechanická účinnost stroje (při konstantní tuhosti tvářeného kusu).
- U málo tuhých strojů nastává příčení pohyblivých částí, čímž tření kapalinné přechází v tření polosuché, nebo až suché, tím se zhoršuje hodnota součinitele tření a vznikají větší energetické ztráty.
- Přílišné pružení pracovního prostoru má za následek prodloužení relativní dráhy výstupního členu stroje, s čímž je spojen nárůst ztrátové práce.
- Tuhost komponent stroje má cenu zvyšovat jen do určité meze a to dotud, pokud přítomění celkové tuhosti pracovního prostoru zařízení, daný zvýšením dílčím tuhosti rámu, bude se zřetelem ke hmotnosti a celkovým rozměrům rámu ještě ekonomicky únosný.

Např. u klikového lisu se na celkové deformaci pracovního prostoru stroje podílí jedinou třetinou rámu a dvěma třetinami klikový mechanizmus (kliková hřídel, ojnice, beran). Z klikového mechanizmu je nejméně tuhá kliková hřídel, následuje ojnice a nejtužší je beran.
Poměrná tuhost k/k pracovního prostoru v závislosti na poměrné tuhosti k/r k rámu (stojanu) klikového lisu

Kde k_m - tuhost klikového mechanizmu
k - tuhost pracovního prostoru lisu
k_r - tuhost rámu (stojanu) lisu

Pro velikost tuhosti pracovního prostoru stroje je možno obecně napsat vztah:

$$\frac{1}{k} = \frac{1}{k_r} + \frac{1}{k_m}$$

Tuhost pohonného mechanizmu, v případě klikového mechanizmu, je možné vyjádřit jako:

$$\frac{1}{k_m} = \sum_{i=1}^{n} \frac{1}{k_i}$$

Kde k_i jsou jednotlivé dílčí tuhosti klikového mechanizmu (kliková hřídel, beran, ...).

Tuhost pohonného mechanizmu k_m je limitována nejméně tuhým členem soustavy, na jehož návrh se musí konstruktér především zaměřit (obvykle se jedná o klikovou hřídel).

Vliv tuhosti pracovního prostoru stroje na průběh síly vyvozené příslušným pohonným mechanizmem:

Vlivem pružení pracovního prostoru stroje dochází k vzájemnému posuvu tvářecí síly a síly vyvozené pohonným mechanizmem.

Závěrem je možno konstatovat, že při návrhu stroje je nutné dbát toho, aby bylo dosaženo co největší tuhosti stroje, hmotnost stroje byla, pokud možno, minimální, energetická bilance pracovního cyklu byla co největší a zároveň bylo dosahováno požadované přesnosti výrobu a životnosti nástrojů.

4.1.8 Dynamická stabilita

Kmitání a chvění výrobního stroje je jev škodlivý, avšak někdy neoddělitelně spjatý s jeho chodem, neboť jednotlivé součásti strojů jsou pružné.

Rázy a chvění, které jsou nevyhnutelně spjaty s prací některých tvářecích strojů, je třeba izolovat od okolí vhodným uložením stroje na základ (převážně buchary), neboť se jinak přenášejí do okolí.

Škodlivost kmitání se projevuje především ve vlastní výrobě snížením přesnosti a jakosti povrchu výrobku a nevyhnutelně i snížením výrobnosti.

U tvářecích strojů, kde obvykle dochází k impulsivnímu odběru energie, se pracuje s velkými tvářecími silami a dochází k častým rázům. Materiál stroje nevysoko namáhán,
v některých případech až na mez pevnosti. Výsledkem toho se často vyskytují enormní opotřebení a někdy i poruchy způsobené únavou materiálu. Tyto poruchy lze eliminovat správným nadimenzováním jednotlivých komponent stroje. Kromě tohoto je nutné vybavit stroj pojistným zařízením proti jeho přetížení.

Dále je nutno dbát i na další požadavky, jako jsou například:

- **UNIFIKACE**
- **STAVEBNICOVÉ (MODULÁRNÍ) ŘEŠENÍ**
- **TECHNOLOGIČNOST KONSTRUKCE**
- **FLEXIBILITA PROVOZU**
- **VYUŽÍVÁNÍ MODERNÍCH MATERIÁLŮ v konstrukci**
- **MECHANIZACE (AUTOMATIZACE) PROVOZU**
Kapitola 5 - Základní dělení tvářecích strojů
5 Základní dělení tvářecích strojů

Tvářecí stroje lze dělit podle různých hledisek – např.:

- Podle základního technologického určení
 a) buchary
 b) lisy
 c) válcovací stroje
 d) ostatní (stroje na dělení materiálu, drtíče ...)

5.1 Podle druhu pohybu výstupního členu stroje

a) Tvářecí stroje s přímočarým pohybem výstupního členu (lisy, tažné stroje, válcovací stroje, buchary)

![Obrázek 49 Příklad (zleva) pěchování, tažení, válcování mezi deskami (příčné klínové válcování)](image1)

b) Tvářecí stroje s nepřímočarým pohybem výstupního členu (zakružovací stroje, válcovací stroje, stroje pro ohyb, ohybaci stroje)

![Obrázek 50 Příklad (zleva) válcování, zakružování, ohybání](image2)

5.2 Podle charakteristických parametrů stroje

a) Stroje omezené silou - velikost pracovní síly není závislá na velikosti zdvihu výstupního členu

U této kategorii strojů je možno dosáhnout konstantní pracovní síly na jejich výstupním členu. Síla na výstupním členu stroje je konstantní. Typickým příkladem je hydraulický lis, který při konstantním tlaku v pracovním hydraulickém válci (válcích) může vyvodit konstantní jmenovitou sílu v průběhu celého zdvihu.

![Obrázek 49 Příklad (zleva) pěchování, tažení, válcování mezi deskami (příčné klínové válcování)](image1)

![Obrázek 50 Příklad (zleva) válcování, zakružování, ohybání](image2)
49

Pracovní síla hydraulického lisu $F \ [MN]$ je vyvozena tlakem $p \ [MPa]$ hydraulického média na plochu průřezu plunžru (nebo pistu) $S \ [m^2]$.

$$ F = S \cdot p $$

b) Stroje omezené zdvihem - velikost pracovní síly je závislá na poloze výstupního členu
Síla na výstupním členu stroje je závislá na poloze pohonného mechanizmu. Typickým příkladem je klikový lis.

Síla klikového lisu $F \ [MN]$ je převodovou funkcí klikového mechanizmu $i\ [\alpha]$ transformována z konstantního momentu na klice $M \ [Nm]$. Síla na výstupním členu
klikového lisu je dána:

\[F = \frac{M}{i} \]

c) **Stroje omezené velikosti využitelné energie** - Typickým příkladem jsou především buchary. Během tváření je přenos energie mezi zdrojem a výstupním členem zpravidla přerušen. Kinetická energie padajícího beranu je přeměněna na deformační energii tvářeného kusu.

Obrázek 53 Stroj omezený velikosti využitelné energie – základním představitelem je padací buchar
5.2.1 Porovnání bucharu a lisu z energetického hlediska

Síla na lise je omezena silou \(F_{l_{\text{max}}} \), proto je polotovar na lise přetvořen pouze na výšku \(h_3 \) v rámci jednoho zdvihu. Na bucharu je každým úderem (zdvihem) předána práce \(A \). Proto je na bucharu možné přetvořit polotovar na menší výšku, než na lise s tím, že s narůstajícím odporom narůstá velikost síly a klesá tak přírůstek přetvoření.

Zvětšená práce u bucharů je způsobena nutností překonávat na každý úder pružnou deformaci. Větší rychlost tváření na bucharu způsobuje větší hodnotu přetvárného odporu a ztráty zvětšené o pasivní odporu při opakovaných úderech.

Podle tvářecích charakteristik technologických operací možnosti použití

- univerzální
- jednoúčelové

Výběr možných technologických operací, které lze realizovat na tvářecích strojích
a) Objemové tváření – do této oblasti patří například volné a záпустkové kování ...
b) Plošné tváření – do této oblasti patří například tažení, ohýbání ...
c) Dělení materiálu
 c1) střihání
 c2) lámaní
 c3) drcení

5.2.2 Dělení tvářecích strojů dle konstrukčního provedení
a) Stroje horizontálního provedení
b) Stroje vertikálního provedení
Podle druhu rámu stroje:
- Podle druhu pohonu
 a) Stroje s přímým pohonem
 b) Stroje s nepřímým pohonem
 c) Multiplikátorový
 - Podle umístění pohonu (u vertikálního provedení)
 a) stroje s horním pohonem
 b) stroje se spodním pohonem

5.3 Rámy tvářecích strojů

5.3.1 Materiál rámu

Výběr vhodného materiálu pro konstrukci je ovlivněn mnoha parametry:
- Druh namáhání (tah, tlak, krut, kombinované namáhání...) pro které je navržený materiál vhodný.
- Mez pevnosti materiálu (mez kluzu, mez unavy) - bezpečnost proti plastickým deformacím.
- Jak odolává materiál cyklickému zatěžování, únava materiálu.
- Měrná hmotnost materiálu.
- Modul pružnosti v tahu materiálu (E).
- Modul pružnosti ve smyku materiálu (G).
- Tlumící účinky materiálu - dynamické chování.
- Součinitel tření, tvrdost (tření a velikost opotřebení pokud se jedná o vodící plochy).
- Velikost vnitřního pnutí v součásti - geometrická stabilita.
- Součinitel tepelné roztažnosti.
- Součinitel přestupu tepla - termoelastické chování (nutnost chlazení apod.).

Kromě výše uvedeného mají na výběr vhodného materiálu nepochybně vliv také výrobní a ekonomická hlediska:
- Cena materiálu
- Možnosti průmyslové výroby
- Možnosti zpracování
- Technologie svařování nebo lití (s litím spojená výroba forem)
Tabulka 4 Mechanické vlastnosti vybraných konvenčních a kompozitních materiálů

<table>
<thead>
<tr>
<th>Materiál</th>
<th>konstrukční ocel</th>
<th>šedá litina</th>
<th>hliník</th>
<th>Konstrukční beton</th>
<th>polymer beton</th>
<th>Oxidová keramika Al2O3</th>
<th>Kompozit s epoxid. pryskyřicí - uhlíkové vlákno HM</th>
<th>Výztužení I</th>
<th>Kompozit s epoxid. pryskyřicí - uhlíkové vlákno H1, Výztužení II</th>
<th>Kompozit s epoxidovou pryskyřicí, skelné vlákno, Výztužení II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Měrná hmotnost [kg/m³]</td>
<td>7850</td>
<td>7200</td>
<td>2700</td>
<td>2300</td>
<td>2300 - 2400</td>
</tr>
<tr>
<td>Modul pružnosti [GPa]</td>
<td>210</td>
<td>80-140</td>
<td>70</td>
<td>45</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Pevnost v tahu [MPa]</td>
<td>250-1500</td>
<td>400</td>
<td>500</td>
<td>0,8-5</td>
<td>X.15</td>
<td>30</td>
<td>1200</td>
<td>2400</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>Pevnost v tlaku [MPa]</td>
<td>200-1200</td>
<td>1000</td>
<td>50</td>
<td>100-120</td>
<td>150</td>
<td>450</td>
<td>450</td>
<td>450</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Součinitel teplotní vodivosti [W/mK]</td>
<td>45</td>
<td>50</td>
<td>220</td>
<td>1,5</td>
<td>1,3-2</td>
<td>30</td>
<td>50</td>
<td>10</td>
<td>0,4</td>
<td></td>
</tr>
<tr>
<td>Měrná tepelná kapacita [J/kgK]</td>
<td>50</td>
<td>50</td>
<td>90</td>
<td>100</td>
<td>100</td>
<td>90</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>1,2</td>
</tr>
<tr>
<td>Teplota tání [°C]</td>
<td>1500</td>
<td>1200</td>
<td>660</td>
<td>600</td>
<td>120</td>
<td>2000</td>
<td>2000</td>
<td>2000</td>
<td>200 (s termoplasty až 400)</td>
<td></td>
</tr>
</tbody>
</table>

5.3.2 Dělení rámů tvářecích strojů dle jejich uspořádání

- Horizontální
- Vertikální
- Kombinované
- Otevřené rámy („C“ rámy)

Obrázek 56 Otevřené rámy - jedno- a dvojstojanový

- Uzavřené rámy („O“, „A“ rámy)
5.3.3 Dělení rámů tvářecích strojů podle jejich výrobní technologie
- Rámy vyráběné z jednoho kusu
- Rámy dělené (přepejaté, skládané, ...)

Obojí předcházející může být buď:
- Rámy svařované – válcované a kované profily, odlévané části
- Rámy odlévané – lité ocel, litina, konstrukční beton, kompozit, ...

5.3.4 Přístupnost pracovního prostoru stroje
Kapitola 6 - Základní obecné výpočty
6 Základní obecné výpočty

(16), (22)

6.1 Uzavřený, tvarově symetrický, centricky zatížený rám

Výpočet uzavřeného, symetrického, symetricky zatíženého rámu reprezentuje zjednodušení běžného uzavřeného rámu tvářecích strojů (typicky lisů, válcovací stolice). Zjednodušení spočívá především v symetrii rozměrů rámu. Tento výpočet je vhodné použít pro prvotní rozměrový návrh rámu stroje.

Obrázek 59 Zjednodušený model rámu

Index „1“ bude dále spojován s rozměry příčky a index „2“ s rozměry stojiny.

Na předchozím obrázku (Obrázek 59) je ve vnějším obrysu rámu vyznačena neutrální osa profilu (osa procházející těžištěm profilu těžiště všech průřezů příček a stojin), která je dále využita pro zjednodušený výpočet. Je vytvořen výpočtový model rámu stroje. Na počátku návrhu nejsou rozměry neutrální osy profilu zpravidla známé, spíše bývají zadány požadavky na vnitřní prostor rámu. Vychází z technologických a konstrukčních požadavků.

6.1.1 Volby průřezu profilů

Profily příčky a stojiny jsou obvykle uvažovány jako duté, obdélníkové profily.
Rozměry průřezů jsou voleny. Pro další výpočty je nutné určit:

- Plocha průřezu
 \[S_1 = b_1 \cdot h_1 - b'_1 \cdot h'_1 \]

- Kvadratický moment průřezu
 \[J_1 = \frac{1}{12} \left(b_1 \cdot h_1^3 - b'_1 \cdot h'_1^3 \right) \]

- Průřezový modul v ohybu
 \[W_1 = \frac{2J_1}{h_1} \]

Stejně platí i pro stojiny (h2,b2)

6.1.2 Pevnostní kontrola

Pro provedení pevnostní kontroly jsou hledána maximální napětí v konstrukci, která se následně porovnávají s dovolenými hodnotami (vychází z mechanických hodnot konkrétního materiálu a zvolené míře bezpečnosti.

Výpočtový model rámu stroje: Pro výpočet je uvažován model ve formě neutrální osy.
části rámu musí být připojeny v místě řezu vnitřní staticky neurčité silové účinky (jedná se o vnitřní staticky neurčitý moment M_o). Protože došlo k rozdělení celistvého tvaru, který je nově zakřiveným prutem na jednom konci vetknutém, musí být model doplněn deformací podmínkou v místě volného konce (vnitřní moment m_o).

Obrázek 62 Výpočetní model ¼ rámu včetně zatížení

Velikost vnitřního, staticky neurčitého, momentu m_o určime s použitím Vereščaginovy podmínky, dle které zůstává pravý úhel v rozích rámupřed zatížením a po zatížení zachován, tedy:

$$\varphi_1 = \varphi_2$$

Pro stanovení velikostí úhlů natočení je nutné vyjádřit průběhy ohybových momentů okolo nosníků. Využijeme Mohrovu metodu (využívá derivačně-integrační závislosti mezi zatížením, vnitřními silami a deformacemi).

Postup:
1) Stanovit průběh momentů na daném nosníku
2) Sestrojit fiktivní nosník k danému nosníku
3) Fiktivní nosník zatížit momentovou plochou původního
4) Průhyb je poté $y = \frac{\bar{M}}{EJ}y = \frac{\bar{M}}{EJ}$ kde \bar{M} je ohybový moment
5) Pootočení je poté $\varphi = \frac{\bar{T}}{EJ} \varphi = \frac{\bar{T}}{EJ}$ kde \bar{T} je posouvající síla
Pro konkrétní hodnoty natočení nosníků tedy platí:

- Nosník 1 v místě působení reakce R_{A1} nebo R_{B1}
 \[\varphi_1 = \frac{1}{E \cdot J_1} \cdot R_{A1} = \frac{1}{E \cdot J_1} \left(\frac{F \cdot l_1^2}{16} - m_o \cdot \frac{l_1}{2} \right) \]

- Nosník 2 v místě působení reakce R_{A2} nebo R_{B2}
 \[\varphi_2 = \frac{1}{E \cdot J_2} \cdot R_{A2} = \frac{1}{E \cdot J_2} \left(m_o \cdot \frac{l_2}{2} \right) \]

Z Vereščoginovy podmínky lze poté určit velikost vnitřního, staticky neurčitého momentu m_o: m_o:

\[\frac{1}{E \cdot J_1} \cdot \left(\frac{F \cdot l_1^2}{16} - m_o \cdot \frac{l_1}{2} \right) = \frac{1}{E \cdot J_2} \left(m_o \cdot \frac{l_2}{2} \right) \]

\[\frac{F \cdot l_1^2}{16 \cdot J_1} - m_o \cdot \frac{l_1}{2} = m_o \cdot \frac{l_2}{2} \cdot \frac{2 \cdot J_2}{J_1} \]

\[m_o = \frac{F \cdot l_1}{16 \cdot J_1} - \frac{m_o \cdot l_1}{2} \]
Příčka je zatížena kombinací ohybu a smyku. Protože se jedná o normálné a tečné napětí, je nutné provést výpočet redukovaného napětí.

Ohybový moment v příčce je:

\[M_{o1} = \frac{F \cdot l_1}{4} - m_o \]

Ohybové napětí v příčce potom je:

\[\sigma_{o1} = \frac{M_{o1}}{W_{o1}} \]

Smykové napětí v příčce potom je:

\[\tau_{s1} = \frac{F}{2 \cdot S_1} \]

Redukované napětí lze například získat pomocí vztahu:

\[\sigma_{red1} = \sigma_{o1} + \tau_{s1} \]

Výpočet maximálního napětí ve stojině

Stojina je zatížena kombinací tahu a ohybu. Maximální napětí je pak na vnitřní straně stojiny, kde dochází k součtu normálního napětí od tahu i ohybu (oboje ve směru podélné osy stojiny).

Ohybový moment ve stojině je právě roven staticky neurčitému momentu \(m_o m_o \).

Maximální napětí ve stojině potom bude:

\[\sigma_{2 max} = \sigma_{t2} + \sigma_{o2} = \frac{F}{2 \cdot S_2} + \frac{m_o}{W_{o2}} \]

U stojiny i příčky se kontroluje **stupeň využití materiálu**, který by se neměl mezi stojinou a příčkou příliš lišit a měl by dosahovat minimální hodnoty 50%. Stupeň využití materiálu je počítán jako poměr napětí v nosníku vůči dovolenému napětí zvoleného materiálu takto:

\[n_1 = \frac{\sigma_{red1}}{\sigma_{D1}} \cdot 100 \]

6.1.3 Stanovení celkové deformace a tuhosti rámu lisu

Deformace se stanovují pro jednotlivé nosníky rámu pouze ve směru působení pracovní síly.
Vyobrazení hledaných deformací ve vertikálním směru

- Průhyb příčky od ohybu:
 \[y_{1\, ohyb} = \frac{1}{E \cdot J_1} \left(\frac{F \cdot l_1^2}{16} - m_o \cdot \frac{l_1}{2} \right) \cdot \frac{l_1}{2} + m_o \cdot \frac{l_1^2}{8} - \frac{F \cdot l_1^3}{96} \]
 \[= \frac{1}{E \cdot J_1} \cdot \left(\frac{F \cdot l_1^2}{48} - m_o \cdot \frac{l_1^2}{8} \right) \]

- Průhyb příčky od ohybu
 \[y_{1\, smyk} = \beta \cdot \frac{F \cdot l_1}{G \cdot S_1} \]

- Prodloužení stojiny od tahu:
 \[y_2 = \frac{F \cdot l_2}{2 \cdot E \cdot S_2} \]

- Celková deformace rámu je poté:
 \[y_c = 2 \cdot \left(y_{1\, ohyb} + y_{1\, smyk} \right) + y_2 \]

- Tuhost rámu je:
 \[k_c = \frac{F}{y_c} \]

6.2 Otevřený stojan

Při výpočtu otevřených stojanů se využívá někdy teorie přímých a křivých prutů (podle tvaru stojanu). Neutrální osa průřezu nosíků je rovinná křivka s průřezy souměrnými k rovině osy.

6.2.1 Stojan s přímou stojinou

Tvar stojanu lze přibližně uvažovat jako přímý nosník s dokonale tuhým stolem.
Zakřivení neutrální osy ohybu:

\[\rho = \frac{\xi \cdot E \cdot J}{M} \]

Kde: \(\xi \) je součinitel tvaru stojanu (0,7 ÷ 1,3)

\(E \) je modul pružnosti v tahu

\(J \) je kvadratický moment průřezu stojiny

\(M \) je ohybový moment stojiny k její střednici

Ohybový moment způsobující zakřivení stojiny:

\[M = F \cdot (a + m) \]

Úhel rozevření je potom:

\[\gamma = \frac{L}{\rho} = \frac{L + y_1 + y_2}{\rho + a + e} \]

Celková deformace bude:

\[y = y_1 + y_2 = \frac{L \cdot (a + e)}{\rho} \]

Tuhost stojanu:

\[k_r = \frac{F}{y} = \frac{F \cdot \rho}{L \cdot (a + e)} = \frac{\xi \cdot E \cdot J}{L \cdot (a + e) \cdot (a + m)} \]

Poloha neutrální osy bude:

\[e = h \cdot \frac{\sigma_1 + \sigma_2}{\sigma_1 + \sigma_2} = h \cdot \frac{\sigma_{1 max}}{\sigma_{1 max} + \sigma_{2 max}} \]

Jednotlivá napětí jsou:
\[\sigma_1 = \frac{F}{S}; \sigma_1 = \frac{M \cdot m}{J}; \sigma_2 = \frac{M \cdot (h - m)}{J} \]

6.2.2 Stojan s lomenou stojinou

Stojan lze nahradit lomeným prutem na střednici průřezů s kvadratickými momenty \(J_1, J_2, J_3 \) a \(J_3 \).

Relativní deformace mezi horní a spodní částí stojanu je dána superpozicí dílčích deformací a posunutí stolu, stojiny a horní lomené části. Uvažována je deformace způsobená ohybem a tahem:

\[y_1 = \frac{F \cdot (a + e)^3}{3 \cdot E \cdot J_1} \]
\[y_2 = \frac{F \cdot l_2}{E \cdot S_2} \]
\[y_2 = \frac{F \cdot l_3^3}{E \cdot J_3} \cdot \cos^2 \alpha + \frac{F \cdot l_3}{E \cdot S_3} \cdot \sin^2 \alpha \]

Tomu odpovídají úhlová natočení:

\[\varphi_1 = \frac{F \cdot (a + e)^2}{2 \cdot E \cdot J_1}; \varphi_2 = \frac{F \cdot (a + e) \cdot L_2}{2 \cdot E \cdot J_2} \]

Relativní deformace je:

\[y = y_1 + y_2 + y_3 + l_1 \cdot \varphi_2 + l_3 \cdot \varphi_2 \cdot \cos \alpha \]

Celkové natočení je:

\[\varphi = \varphi_1 + 2 \cdot \varphi_2 \]

6.2.3 Vliv deformace stojanu na prováděnou technologii (23)
Hlavním důvodem pro poměrně vysokou tuhost tvářecích strojů je požadavek na přesnost výrobku i při kolísání tvářecí síly. Pro vyvození síly na tvářecích strojích je nutné zatížit celý silový řetězec dílů stroje. Protože nástroje pracují vůči sobě s poměrně vysokou přesností, je požadována co nejmenší celková deformace stroje. Velmi důležitá je úhlová deformace pracovního prostoru hlavně u lisů, neboť upínací plochy nástrojům na stole a beranu se sešikmí.

Obrázek 68 Znázornění zešikmení osy beranu vůči stolu vlivem celkové deformace

Boční posunutí nástrojů $x = y \cdot \tan \gamma$ a $y = x \cdot \tan \gamma$ způsobuje poškození nástrojů, snižuje jejich životnost a zhoršuje kvalitu výlisků. Na lisech s vyložením se proto v záporném úhlu $-\delta$ úmyslně sešikmuji upínací plochy na stole a na beranu tak, aby při zatížení stroje a jeho úhlovém vychýlení upínacích ploch nástrojů. Platí tedy, že celková vůle v nástrojích musí být větší než boční přesunutí nástrojů.

Obrázek 69 Úmyslné zešikmení nástroje pro potlačení vlivu bočního posunutí nástrojů
Tabulka 5 Dovolené úchytky rovnoběžnosti upínacích ploch nástrojů [mm]

<table>
<thead>
<tr>
<th>zatěžování</th>
<th>"C" stojan</th>
<th>"O" stojan</th>
</tr>
</thead>
<tbody>
<tr>
<td>bez zatížení</td>
<td>na šířku (zleva doprava)</td>
<td>0,015/100</td>
</tr>
<tr>
<td></td>
<td>na hloubku (zepředu dozadu)</td>
<td>0,030/100</td>
</tr>
<tr>
<td>osové zatížení F_j</td>
<td>na šířku</td>
<td>0,04/100</td>
</tr>
<tr>
<td></td>
<td>na hloubku</td>
<td>0,20/100</td>
</tr>
<tr>
<td>mimostředné zatížení v 1/4 hloubky a 1/4 šířky stolu silou 1/4 F_j</td>
<td>na šířku</td>
<td>0,20/100</td>
</tr>
<tr>
<td></td>
<td>na hloubku</td>
<td>0,10/100</td>
</tr>
</tbody>
</table>
Kapitola 7 – Pohony tvářecích strojů
7 Pohony tvářecích strojů

(16)
Všechny tvářecí stroje využívají ke své práci systémů, které jsou schopny:
- akumulovat energii a v požadovaném okamžiku ji vhodně uvolnit za účelem provedení požadované technologické operace a správně ji přeměnit na práci plastických deformací tvářeného kusu. Toto je v praxi realizováno pomocí různých druhů akumulátorů energie.
- znásobit vhodným mechanismem hnací sílu tak, aby její charakteristika v každém okamžiku kopírovala s co nejmenším přebytkem a s co největší přesností průběh tvářící síly potřebné pro provedení technologické operace.

Čím je větší odchylka tvářecí síly a síly pohonu během procesu tváření, tím jsou větší energetické ztráty.

Je teoreticky i prakticky dokázáno, že čím rychleji na tvářecím stroji tváříme, tím je větší energetická náročnost pro vytvoření stejného výrobku. Toto souvisí s mechanikou procesu, jmenovitě s dynamickými účinky, které vznikají při tváření.

7.1.1 Základní dělení
- Podle zdroje energie
 a) Přímé
 b) Nepřímé (pohon s akumulací energie)
 - Podle druhu energetického zdroje
 a) Elektrické
 b) Hydraulické
 c) Pneumatické
 d) Kombinované

Při návrhu pohonu je nutné provést:
- Důkladnou analýzu energetických a silových požadavků na příslušnou technologickou operaci
- Bilanci potřeb pro překonávání energetických ztrát technologického zařízení, mimo jiné také:
 - pro běh stroje naprázdno
 - případné pomocné operace

Na energetickou bilanci pracovního cyklu má vliv:
- Úroveň konstrukčního návrhu stroje (např. použitý poháněcí mechanismus, zvolený druh pohonu, ...)
- Kvalita provedení vlastního stroje (např. způsoby uložení jednotlivých mechanismů, vodící plochy, způsoby opracování jednotlivých činných ploch, mazání, ...)

Tvářecí stroje využívají ke své práci možnosti:
- Akumulovat energii a v požadovaném okamžiku ji vhodně uvolnit - za účelem provedení požadované technologické operace a správně ji přeměnit na práci na plastickou deformaci. Toto se v praxi realizuje pomocí různých druhů akumulátorů.

AKUMULÁTORY:
- mechanické (setrvačníky)
- hydraulické (akumulace tlakové kapaliny zajištěné pneumaticky nebo mechanicky)
- elektrické (baterie, kondenzátory)

- Znásobit vhodným způsobem sílu - tak, aby její velikost v požadovaném okamžiku technologické operace s co nejmenším přebytkem a s co největší přesností kopírovala velikost a průběh síly potřebné pro provedení technologické operace.

7.2 Akumulátory energie používané u tvářecích strojů

Obrázek 70: Základní rozdělení akumulátorů

7.3 Akumulátory mechanické – setrvačníkové (kinetické)

Obrázek 71: Odběrový diagram setrvačníkového pohonu
Kde:
A_0 ... práce při chodu naprázdno,
A_p ... práce potřebná pro tváření,
P_s ... střední výkon,
t_c ... čas cyklu,
t_p ... čas potřebný pro tváření.

Střední výkon P_s lze stanovit jako:
$$P_s = \frac{A_0 + A_p}{t_c} = \frac{\int_{t_c}^{t_c-t_p} P(t) \cdot dt + \int_{t_c-t_p}^{t_c} P(t) \cdot dt}{t_c}$$

Při zařazení akumulátoru je pohonný motor potom dimenzován na výše vyjádřený střední výkon.
$$A_p = A_s + \Delta A$$
$$A_s = P_s \cdot t_c$$

Kde:
A_s ... je práce potřebná pro jeden cykl.

Energie setrvačníku při běhu naprázdno
Jestliže budou otáčky setrvačníku naprázdno n_1, bude energie v něm akumulována:
$$A_1 = \frac{1}{2} \cdot J \cdot \omega_1^2$$

Po zatížení otáčky setrvačníku poklesnou na n_2 a energie předaná setrvačníkem bude:
$$\Delta A = \frac{1}{2} \cdot J \cdot (\omega_2^2 - \omega_1^2)$$

Poměrný pokles otáček setrvačníku (skluz):
$$\nu = \frac{\omega_1 - \omega_2}{\omega_1} = 1 - \frac{\omega_2}{\omega_1}$$

Na základě výše uvedeného potom bude energie předaná setrvačníkem:
$$\Delta A = \frac{1}{2} \cdot J \cdot \omega_1^2 \cdot \left(1 - \frac{\omega_2^2}{\omega_1^2}\right) = A_1 \cdot \nu \cdot (2 - \nu) = A_1 \cdot z$$

Kde:
z ... stupeň využití setrvačníku
$$z = \nu \cdot (2 - \nu)$$

Kapacita setrvačníku je největší množství energie, které lze setrvačník u běhu pracovního cyklu odejmout:
$$\Delta A = A_1 \cdot z_m$$

$z_m = 1 \ldots$ při konstrukčním uspořádání, kdy je možno setrvačník odpojit od motoru pomocí spojky,
$z_m = 0,25 \div 0,5 \ldots$ při konstrukčním uspořádání, kdy setrvačník nelze odpojit,
$z_m = 0,25 \ldots$ nepřetržitý chod,
$z_m = 0,5 \ldots$ chod s přestávkami.

Nerovnoměrnost chodu setrvačníku
$$\kappa = \frac{\omega_1 - \omega_2}{\omega_s}$$

Příklad návrhu setrvačníku vřetenového lisu z energetické bilance pracovního
cyklu

Z energetické bilance pracovního cyklu odvoďte vztah pro hmotový moment setrvačnosti setrvačníku vřetenového lisu pro technologickou operaci ražení (přibližně trojúhelníková tvářecí charakteristika).

Energetická bilance jednoho pracovního cyklu: \[A_c = A_u + A_z + A_d \]

Jednotlivé práce ve výše uvedeném vztahu jsou vyjádřeny v kapitole „Energetická bilance pracovního cyklu“.

Práce užitečná pro technologickou operaci ražení: \[A_u = \frac{1}{2} \cdot F_j \cdot h_u \]

Práce ztrátová: \[A_z = \zeta \cdot A_c \]

Práce pružných deformací pracovního prostoru stroje: \[A_d = \frac{1}{2} \cdot F_j \cdot y_c \]

Kde:

\(F_j \) ... jmenovitá síla lisu;

\(h_u \) ... užitečný zdvih výstupního členu stroje (přibližně úměrný velikosti plastické deformace tvářeného kusu);

\(y_c \) ... velikost celkové pružné deformace pracovního prostoru stroje.

Po dosazení do základní rovnice bude:

\[A_c = A_u + \zeta \cdot A_c + A_d \]

\[A_c = \frac{A_u + A_d}{1 - \zeta} = \frac{\frac{1}{2} \cdot F_j \cdot h_u + \frac{1}{2} \cdot F_j \cdot y_c}{\eta_v \cdot \eta_{pt} \cdot \eta_v} = \frac{F_j}{2 \cdot \eta_v \cdot \eta_{pt} \cdot \eta_v} \cdot (h_u + y_c) \]

Kde:

\(\eta_v \) ... účinnost vřetene;

\(\eta_{pt} \) ... účinnost patního ložiska;

\(\eta_v \) ... účinnost vedení.

Energie pohybujících se hmot (\(A \)) na vřetenovém lisu (kde značnou část představuje energie setrvačníku) musí být rovna nebo větší než \(A_c \), která je odvozena výše.

\[A \geq A_c \]

Kinetickou energii pohybujících se hmot (jedná se o složený pohyb z rotace a posuvu) je možno vyjádřit:

\[A = \frac{1}{2} \cdot m \cdot v^2 + \frac{1}{2} \cdot I \cdot \omega^2 \]

Kde:

\(m \) ... hmota pohybujících se částí vřetenového lisu \([kg]\);

\(v \) ... posuvová rychlost pohybujících se částí na lisu \([m \cdot s^{-1}]\);

\(I \) ... hmotový moment setrvačnosti setrvačníku \([kg \cdot m^2]\);

\(\omega \) ... úhlová rychlost setrvačníku \([rad \cdot s^{-1}]\).
Potom platí:
\[
\frac{1}{2} m \cdot v^2 + \frac{1}{2} I \cdot \omega^2 \geq A_c
\]
Dle praktických zkušeností možno brát:
\[
\frac{1}{2} m \cdot v^2 = 0,05 \cdot A_c
\]
\[
0,05 \cdot A_c + \frac{1}{2} I \cdot \omega^2 \geq A_c
\]
\[
I \geq \frac{(1 - 0,05) \cdot A_c}{\omega^2}
\]
\[
I \geq \frac{(1 - 0,05) \cdot F_j}{\omega^2} \cdot \frac{2 \cdot \eta_{et} \cdot \eta_{pl} \cdot \eta_v}{\eta_v} \cdot (h_u + y_c)
\]
Tímto jsme obdrželi vztah pro výpočet hmotového momentu setrvačnosti setrvačníku vřetenového lisu. Rozměry setrvačníku dostaneme, když vypočtený hmotový moment setrvačnosti položíme rovný hmotovému momentu setrvačnosti navrženého setrvačníku:
\[
l_{setr} = \frac{1}{2} m \cdot (R^2 + r^2)
\]
7.4 Akumulátory hydraulické (statické)

7.4.1 Závažový akumulátor

Patří k nejstarším typům. Vyskytuje se již jen u starých zařízení. Byl prvním typem vysokotlakého akumulátoru.

Byl používán především u strojů s velkou pracovní rychlostí, kde nedocházelo k náhlým prudkým změnám v odběru kapaliny (velké pohybující se hmoty - při rychlé změně vznik tlakového rázu, nutné aby rychlost poklesu pístu byla max. 0,5 \(m \cdot s^{-1} \) a hydraulický obvod byl vybaven pojistným ventilem).

\[h_1 \quad h_2 \quad h_{\text{max}} \quad \varnothing d \]

Výhody:

- neměnná charakteristika: \(p = f(v) \)
- odebraný tlak kapaliny je konstantní (nezávisí na velikosti odebraného objemu)
- umožňuje dodat větší množství kapaliny při vysokém tlaku (1000 až 1500 l při tlaku 20 až 30 MPa)

Nevýhody:

- velké rozměry a hmotnost (může být instalován pouze vertikálně a jeho výška může dosahovat 5 až 10m)

Základní rovnice závažového akumulátoru:
a) Užitečný objem akumulátoru:
\[V_a = S \cdot h_{\text{max}} \]

b) Změna pracovního tlaku akumulátoru v závislosti na odběru:
\[p = \frac{m \cdot g}{S} = \text{konst} \]

c) Velikost akumulované energie:
\[E = m \cdot g \cdot h_{\text{max}} \]

d) Účinnost akumulátoru:
\[\eta = 0,65 \div 0,85 \]

7.4.2 Pružinový akumulátor

Obrázek 75 Některá možná provedení pružinových akumulátorů

Tlak kapaliny je funkcí stlačení pružiny: \[p \neq \text{konst} \]

Výhody:
- výrobně jednoduchý
Nevýhody:

- únava pružin (změna charakteristiky pružiny během provozu)

Nevýhodné vyrábět tyto akumulátory s užitným objemem větším než 10(l) a pro pracovní tlaky vyšší než 7 (Mpa).

Základní rovnice pružinového akumulátoru

a) Užitečný objem akumulátoru

\[V_u = S \cdot h_{\text{max}} \]

Kde maximální zdvih pístu:

\[h_{\text{max}} = \frac{(p_2 - p_1) \cdot S}{k} \]

Užitečný objem bude:

\[V_u = \frac{(p_2 - p_1) \cdot S^2}{k} \]

b) Změna pracovního tlaku

\[p = \frac{F}{S} = \frac{k \cdot h}{S} = \frac{k \cdot V}{S^2} \]

Při odběru objemu kapaliny:

\[\Delta V = S \cdot \Delta h \]

Poklesne tlak kapaliny o:

\[\Delta p = \frac{k \cdot \Delta h}{S} = \frac{k \cdot \Delta V}{S^2} \]

Při poklesu tlaku:

\[p_2 - p_1 = \Delta p = p_2 \cdot (0,1 \div 0,2) \]

Bude tuhost pružiny:

\[k = \frac{\Delta p \cdot S^2}{V_u} = \frac{(0,1 \div 0,2) \cdot p_2}{h_2 - h_1} \]

Při zanedbání tření a setrvačné síly pístu je tlak kapaliny v akumulátoru lineárně závislý na odběru.

c) Velikost akumulované energie

\[E = \frac{p_2 \cdot V_u}{2} \cdot \left(1 + \frac{p_1}{p_2}\right) = \frac{p_1 \cdot V_u}{2} \cdot \left(1 + \frac{p_2}{p_1}\right) \]

7.4.3 Plynový hydraulický akumulátor

Pracuje na pneumaticko-hydraulickém principu. Má poměrně dlouhou životnost, je spolehlivý a neškodí mu náhlý odběr energie.

Použití akumulátoru umožní volit zdroj tlaku (hydrogenerátor a jeho poháněcí elektromotor) s nižšími parametry a nižším výkonem - energetické úspory. Velikost akumulátoru stanovíme z odběrového diagramu hydraulického obvodu. Používá se především tam, kde se jedná o dodávky velkých objemů kapalin o vysokém tlaku (např. nepřímý pohon hydraulických lisů, zdroj vody o vysokém tlaku pro ostřik okují u válcovacích tratí).

Funkce akumulátoru

- akumulace tlakové energie
- kryje objemové ztráty - kompenzuje úniky
- zvláštní zdroj energie
- kompenzátor tepelné roztažnosti
Z konstrukčního hlediska je možno tyto akumulátory dělit na:

- **plynové hydraulické akumulátory s přímým stykem kapaliny a plynu.**
 Je-li pracovním médii olej, nesmí se používat vzduch, ale některý inertní plyn - většinou dusík.
- **plynové hydraulické akumulátory s nepřímým stykem kapaliny a plynu (s dělící přepážkou).**

Základní rovnice plynového akumulátoru

Počítáme s tím, že kapalina je nestlačitelná. Stlačuje a rozpíná se plyn. Vycházíme ze stavové rovnice plynu:

$$p \cdot V^n = \text{konst}$$

a) Izotermická změna stavu plynu:

Blíží se izotermické změně, jde-li o pomalé děje (obyčejně plnění akumulátoru).

b) Adiabatická (polytropická) změna stavu plynu:

Jedná-li se o rychlé děje (obyčejně odběr kapaliny).

Obecně platí:

$$p_1 \cdot V_1^n = p_2 \cdot V_2^n \rightarrow V_2^n = \frac{p_1}{p_2} \cdot V_1^n$$

$$V_u = V_2 - V_1 \rightarrow V_u = \left(\frac{p_1}{p_2}\right)^{\frac{1}{n}} \cdot V_1 - V_1$$
\[V_u = V_1 \left[\left(\frac{p_1}{p_2} \right)^{\frac{1}{n}} - 1 \right] \]

Přípustný pokles tlaku v akumulátoru se většinou připouští 10%.

Poměrný pokles tlaku:
\[
\nu_p = \frac{p_1 - p_2}{p_1} = \frac{\Delta p}{p_1} < 1
\]
\[
\nu_p = 1 - \frac{p_2}{p_1} \rightarrow \frac{p_2}{p_1} = 1 - \nu_p \rightarrow \frac{p_1}{p_2} = \frac{1}{1 - \nu_p}
\]
\[\nu_p \approx 0,1 \]
\[1 - 0,1 = \frac{p_2}{p_1} = 0,9 \]

Potom užitečný objem vyjádřený pomocí poměrného poklesu tlaku v akumulátoru:
\[V_u = V_1 \cdot \left(\frac{1}{1 - \nu_p} \right)^{\frac{1}{n}} - 1 \]

Užitečný objem akumulátoru:

a) izotermická změna
\[V_u = V_1 \cdot \left[\frac{p_1}{p_2} - 1 \right] \]

b) adiabatická změna
\[V_u = V_1 \cdot \left[\left(\frac{p_1}{p_2} \right)^{\frac{1}{n}} - 1 \right] \]

Kapacita setrvačníku:
Jestliže \(\Delta p \) dosahuje velmi malých hodnot, potom je možno psát:
\[\Delta A \approx \Delta V \cdot p_s \]
\[p_s = \frac{p_1 + p_2}{2} \]

kde \((p_s)\) je střední tlak v průběhu odběru kapaliny z akumulátoru
\[
\frac{p_1 - p_2}{p_1} = \nu_p \rightarrow p_2 = (1 - \nu_p) \cdot p_1
\]
\[
p_s = \frac{p_1}{2} \cdot (1 + 1 + \nu_p) = \frac{2 - \nu_p}{2} \cdot p_1
\]

Potom bude:

a) pro izotermickou změnu
\[\Delta A = \Delta V \cdot p_s = \nu_p \cdot V_1 \cdot \frac{2 - \nu_p}{2} \cdot p_1 = p_1 \cdot V_1 \cdot \nu_p \cdot \frac{2 - \nu_p}{1 - \nu_p} = A \cdot \nu_p \]

b) pro polytropickou změnu
\[\Delta A = \frac{\Delta \bar{V}}{p_s} = \left[\frac{1}{1 - \nu_p} \right] - 1 \cdot V_1 \cdot \frac{2 - \nu_p}{2} \cdot p_1 = p_1 \cdot V_1 \cdot \left[\frac{1}{1 - \nu_p} \right] - 1 \cdot \frac{2 - \nu_p}{2} \]

Kde:
\[\nu_p \approx 0,1 \]
\[n = 1,4 \]
\[z_p = 0,106 \]
\[\bar{z}_p = 0.08 \]

Příklady některých konstrukčních variant plynových hydraulických akumulátorů s odděleným stykem kapaliny a plynu:

Obrázek 78 Pístový akumulátor (1) těleso akumulátoru; 2) píst oddělující pracovní kapalinu a plyn; 3) těsnění pístu; 4) 5) dna akumulátoru; 6) matice; 7) utěsnění den akumulátoru; 8) plyn; 9) kapalina) (16)

Obrázek 79 Diferenciální pístový akumulátor (1) těleso akumulátoru; 2) pracovní píst akumulátoru; 3) hydraulicky plunžr; 4) těsnění pracovního pístu akumulátoru; 5) těsnění plunžru; 6) plyn; 7) kapalina) (16)
7.5 Odběrový diagram

Při návrhu nepřímého, akumulátorového pohonu je nutné vycházet z odběrového diagramu pracovního cyklu. V principu se jedná o zaručení dodávky určitého objemu pracovní kapaliny v požadovaném časovém intervalu tak aby byl zaručen pracovní cyklus.

a) Idealizovaný odběrový diagram tlakové kapaliny hydraulickým lisem s přímým pohonem (např. vytlácovací lisy CXT).

Na odběrovém diagramu je znázorněn pracovní cyklus, který se skládá ze čtyř operací s různými odběry pracovní kapaliny v různých časech.

Obecně se přímý pohon používá tam, kde jsou malé rozdíly mezi maximálním a minimálním odebíraným výkonem. Pohonný hydrogenerátor je v tomto případě dimenzován dle maximálního odebíraného výkonu:

\[Q_h \approx 1,2 \cdot Q_{max} \]

Aby byl zaručen bezproblémový chod lisu potom hydrogenerátor, musí dodat cca 1,2x větší výkon než vyžaduje hydromotor.

\[Q_h > Q_{max} > Q_{stř} \]

\[Q_h \] - výkon dodávaný hydrogenerátorem
\(Q_{\text{max}} \) - maximální odebíraný výkon hydromotorem při pracovním cyklu
\(Q_{\text{stř}} \) - střední výkon odebíraný hydromotorem při pracovním cyklu

b) Idealizovaný odběrový diagram tlakové kapaliny hydraulickým lisem s nepřímým (akumulátorovým) pohonem (např. kovací lisy CKV, CKW)

Používá se tam, kde jsou velké rozdíly mezi maximálním a minimálním odebíraným výkonem při pracovním cyklu. Pohonný hydrogenerátor je navrhován dle středního odebíraného výkonu.

\[Q_{h} \approx 1,2 \cdot Q_{\text{stř}} \]

Aby byl zaručen bezproblémový chod lisu potom hydrogenerátor, musí dodat cca 1,2x větší výkon než je střední výkon příslušného pracovního cyklu.

Obrázek 82 Idealizovaný odběrový diagram tlakové kapaliny hydraulickým lisem s nepřímým pohonem

Plochy označené \(Q_{\text{max}} \) vyjadřují výkon, který je odebírán z akumulátoru.
Plochy označené \(Q_{h} \) vyjadřují výkon, který je dodáván hydrogenerátorem do akumulátoru.

7.6 Přímý pohon mechanických lisů

V předchozích kapitolách je popsán rozdíl mezi nepřímým (akumulátorovým) a přímým pohonem převážně hydraulických lisů. U lisů mechanických (klikový a vřetenový) je typický pohon s akumulací energie (setrvačník), protože odběr energie je obvykle výrazně špičkový. Špičkový odběr energie znamená vysoce výkonný elektromotor pohonu a problematickou akumulaci energie.

Přímý pohon u mechanických lisů přináší nové možnosti. Mezi stěžejní výhody přímého pohonu patří možnost rozšíření technologického využití strojů. Konkrétně se jedná o aplikaci přesného řízení rychlosti výstupních členů.

Naopak mezi nevýhody patří podstatně dražší i několikanásobně těžší motory, které musejí pro stejné technologie disponovat několikanásobně vyšším výkonem (nebo alespoň točivým momentem). Cena motorů je vyšší i z důvodu jiné konstrukce (jedná se o synchronní mnoha pólůvé motory oproti běžným asynchronním).

Přímý pohon lze proto chápat jen jako rozšíření možností tvářících strojů, nikoliv jako náhradu stávajících akumulátorových pohonů. V současném stavu vývoje pohonův
motorů lze konstatovat, že přímého pohonu lze použít pouze v omezených případech, především pak pro malé tvářecí jednotky.

Přímý pohon mechanických lisů je navázán na vývoj v oblasti speciálních momentových motorů a výkonové řídící elektroniky. Speciální momentové pomaluběžné elektromotory (obvykle zvané TORQUE MOTORY).

Pro potřeby pohonu mechanických lisů je za „přímý pohon“ akceptována i varianta s vloženým převodem, protože požadované otácky výstupního členu jsou příliš nízké v porovnání se schopnostmi motorů.

(PAKT je průběhu aktuální výkonové spotřeby, PMAX je špičkový výkon motoru přímého pohonu a PSTŘ je výkon motoru akumulátorového pohonu)

Na předchozím obrázku (Obrázek 83) je zobrazen příklad průběhu aktuální výkonové spotřeby stroje PAKT (silná čára) pro provedení technologické operace. V případě využití akumulátorového pohonu musí být zdroj energie pro dobíjení akumulátoru minimálně rovný průměru aktuální energetické spotřeby (většinou se počítá s + 20% rezervou). Takový výkon reprezentuje přímka PSTŘ. Pro případ přímého pohonu musí být motor schopen dodávat energii o větším než maximálním, špičkovém výkonu PMAX. Protože by dodávka extrémních výkonů byla spojena s extrémními motory, fungují přímé pohony tak, že pro vyvození extrémního točivého momentu (nebo finální výstupní síly) připouští snížení rychlosti otáčení. Vztah mezi rychlostí, silou a výkonem platí a je popsán následujícím jednoduchým vztahem:

\[P = F \cdot v = M \cdot \omega \]

U pohonu mechanických lisů můžeme předpokládat, že extrémní točivý moment bude nutné vyvodit jen v minimální části pracovního zdvihu.

7.6.1 Aktuální výkon

Ze vztahu \(P = F \cdot v = M \cdot \omega \) lze snadno spočítat aktuální výkon, který není v průběhu zdvihu konstantní. Výkon je závislý na druhu pohonu a na průběhu tvářecí síly během užítečného zdvihu.

Za předpokladu, že uvažujeme vřetenový lis, kterému je dodávána energie setrvačníkem až do úplného zastavení (vyčerpání energie) a průběh tvářecí síly je lineární od minimální na počátku operace po maximální na jejím konci, můžeme aktuální rychlost výstupního členu lisu stanovit jako:
\[v_x = v_0 \cdot \sqrt{\frac{E_0 - \frac{1}{2} \cdot h^2 \cdot F_j}{E_0}} \]

Kde: \(v_0 \) je počáteční rychlost výstupního členu
\(h \) je aktuální pracovní zdvih
\(h_u \) je užitečný pracovní zdvih
\(F_j \) je jmenovitá síla
\(E_0 \) je počáteční energie setrvačníku

Rozdíl v přímém a nepřímém pohonu je skryt především v požadavcích na motor pohonu. U nepřímého, pohonu, je výkonem motoru dobíjen akumulátor téměř konstantně – výkon je dodáván rovnoměrně. Naopak u přímého pohonu je z motoru pohonu výkon odebírán prakticky jen v okamžiku aktuální potřeby tvářecích operací – výkon je dodáván špičkově. Protože je ale práce (energie) potřebná pro tvářecí operaci pro oba pohony totožná, je zcela zřejmé, že maximální výkon motoru přímého pohonu bude výrazně vyšší.

7.6.2 Motory pro přímý pohon

Pro potřeby přímého pohonu byly vyvinuty speciální motory, tzv. TORQUE. Torque motory jsou zvláštní třída bezkartáčových střídavých servomotorů s permanentními magnety běžně označované jako servomotory s permanentními magnety, nebo bezkartáčové DC motory. Vzhledem k tomu, že užitečné zatížení je přímo spojeno s rotořem motoru bez použití přenosového prvku, jsou Torque motory klasifikovány jako vhodné pro přímé pohony.

![Obrázek 84 Příklad Torque motoru](image)

Stejně jako u lineárních motorů, Torque motory jsou typem "bezrámového" motoru. To znamená, že motor nezahrnuje skříň, ložiska, zpětno- vazebné zařízení. Tyto komponenty mohou být stavitelem stroje zvolený a optimalizovány pro požadované výkony, nebo zakoupeny jako součást sestavy.

Torque motory produkují vysoký točivý moment při střední rychlosti, nebo když je motor v klidu, nebo pozastaven. Na rozdíl od tradiční jednotky, je velikost Torque motoru závislá pouze na momentu a ne na výkonu.

7.6.3 Přívod energie pro přímý motor

Z předchozího je zřejmé, že motorem přímého pohonu je energie odebírána nárazově. Odebírat takto relativně velikou energii ze sítě provozovatel rozvodné sítě nepovolí. Proto je napojení takového stroje k síti podmíněno použitím zařízení, které umožní odebírání špičkového výkonu za podmínky rovnoměrného dobíjení energií.
Takovým zařízením může být elektrický kondenzátor, ovšem o přiměřené kapacitě. Přiměřenou kapacitou je myšlena energie rovnající se alespoň energii potřebné pro jeden zdvih (v uvažovaném příkladu se jedná o min. 30 kJ). Takto velké kondenzátory se vyrábějí pod označením „kapacitní zásobníky“ (capacitor banks) – jedná se o vysokonapěťové kapacitory používané k napájení špičkových odběrů pulzního charakteru (elektromagnetické tváření, pulzní lasery, ...).

Další možností, které se využívá pro uskladnění energie, je setrvačníkový akumulátor. K akumulaci energie se využívá mechanický setrvačník, který je napojen na motor-generátor. Protože u strojů je nutné uvažovat i s brzděním motorem, je motor pohonu také motor-generátorem.

7.6.4 Účinnost systému

Jako jedna z předností přímého pohonu je udávána jeho vyšší účinnost (nižší energetické ztráty), protože dochází k odstranění spojky a brzdy a naopak je využívána rekuperace energie. Konkrétní porovnání ale neexistuje, nebo není veřejně dostupné.

Určitou představu o účinnosti pohonu je možné si vytvořit na základě popisu pohonů, tedy toho, co se děje s energií mezi rozvodnou sítí a excentrovou hřídelí.

Ztráty konvenčního pohonu

Konvenční pohon se skládá z asynchronního motoru (pro kovací lis 25 MN cca 150 kW), který může být napájen přes frekvenční měnič. Účinnost takového motoru se pohybuje v závislosti na jeho otáčkách cca okolo 92% (25). Samotná účinnost měniče může být až 98%. Na konkrétním lise je dále použit převod klínovým řemenem, jehož účinnost je přibližně 96% (26). Samotný setrvačník je umístěn na samostatné předložové hřídeli uložené na valivých ložiskách, jejichž účinnost se udává okolo 99%. Následuje převod ozubenými koly, jehož účinnost je udávána minimálně na 98%. Následujícím členem pohonu je spojka. Spojka je místem, kde dochází k výrazným ztrátám energie daných prokluze při spnutí. Protože je velikost ztráty závislá na mnoha parametrech, nelze ji jednoduše vyjádřit konkrétním procentem účinnosti. Obdobně, jako spojka, je obtížně popsatelná i brzda, která zastavuje pohybující se mechanismus v horní úvrati.

Ztráty přímého pohonu

Přímý pohon se skládá ze speciálního momentového motoru (torque motor), jehož účinnost při jmenovitých otáčkách a výkonu je 96% (27), při jiných, než jmenovitých otáčkách, ale bude účinnost nižší. Tento motor je ale napájen řídící
jednotkou, která se skládá z měniče napětí a usměrňovače, jejichž účinnosti jsou cca 98% a 99%. Za motorem je již umístěn převod ozubenými koly a planetová převodovka s účinnostmi minimálně 98% a 97% (28). Samotný pohon je tedy účinnější. Když se ale do pohonu připočte i vliv nutné akumulace energie, celková účinnost bude nižší.

V případě využití superkondenzátoru je nutné počítat s jejich životností cca 1 milion nabíjecích cyklů s účinností nabíjení i vybíjení v rozmezí 88-98%.

Akumulace v setrvačníku je spojena s nasazením dalšího výkonného motor/generátoru s nutností uvažování účinnosti jeho i řídící elektroniky jak při vybíjení, tak při nabíjení. Nezanedbatelné jsou i ztráty odporem ve vedení. Dostatečně výkonné setrvačníky jsou komerčně dostupné, největší komerčně používaný setrvačník poskytuje kolem 1,6MW po dobu 10s (29).

Celková účinnost takového pohonu tedy také nebude moc vysoká.
Kapitola 8 - Hydraulické lisy
8 Hydraulické lisy

Lis, u něhož je pracovní síla na beranu nebo pohyblivé traverze vyvozena hydraulickým převodem tlakové energie pracovní kapaliny z energetického zdroje (čerpadla, akumulátoru).

Hydraulické lisy jsou pro některé technologie zcela nezastupitelné, zvláště pokud se jedná o kování velice rozměrných a hmotných výkovů. Limitující v současné době není velikost hydraulického lisu, ale zhotovení potřebně velikého polotovaru (ingotu), ze kterého je výkovek vykován.

8.1.1 Základní principy hydrauliky

Využívaní kapalin k pohonům nebo ovládání strojů je výhodné, protože vlastnosti kapalin, jako jsou jejich malá stlačitelnost, rychlost šíření vzruchu a další, velmi dobře odpovídají moderním požadavkům výrobních strojů.

U strojů jsou pro násobení síly nebo akumulaci energie využívány zákony hydromechaniky. Hydraulické lisy používají především principu Pascalova zákona. Tento zákon pojednává o rovnoměrném šíření tlaku v kapalinách všemi směry.

![Obrázek 86 Princip hydraulického lisu (Pascalův zákon)](image_url)

Hydraulický převod je popsaný následujícími rovnicemi:

\[F_1 = S_1 \cdot p \]
\[F_2 = S_2 \cdot p \]

Potom platí:

\[\frac{F_1}{F_2} = \frac{S_1 \cdot p}{S_2 \cdot p} = \frac{S_1}{S_2} \]
\[F_2 = F_1 \cdot \frac{S_2}{S_1} \]

Tohoto principu se využívá při potřebě vyvodit velké síly.

Základem výpočtu hydraulických pohonů jsou rovnice kontinuity (průtoku):

\[S_1 \cdot v_1 = S_2 \cdot v_2 = \cdots = S_n \cdot v_n = Q \]

kde \(v_1, v_2, \ldots, v_n \) rychlosti proudu kapaliny v jednotlivých průřezech

Bernouliho rovnice pro stacionární proudění ideální kapaliny:

\[\frac{v_1^2}{2 \cdot g} + \frac{p_1}{\rho \cdot g} + h_1 = \frac{v_2^2}{2 \cdot g} + \frac{p_2}{\rho \cdot g} + h_2 + \frac{\Delta p}{\rho \cdot g} \]

kde \(S_1, S_2, \ldots, S_n \) plochy jednotlivých průtočných průřezů
\(v_1, v_2, \ldots, v_n \) rychlosti proudu kapaliny v jednotlivých průřezech
\(p_1, p_2, \ldots \) tlaky kapaliny v jednotlivých průřezech
\(h_1, h_2 \) ... niveláční výšky jednotlivých průřezů
\(\rho \) ... hustota kapaliny
\(g \) ... gravitační zrychlení
\(\Delta p \) ... tlaková ztráta vyjadřující ztrátu přenosem energie mezi dvěma průřezy \(S_1 \) a \(S_2 \).

Je-li první průřez u hydrogenerátoru a druhý u hydromotoru, pak platí pro hydraulický tlak na pístu hydromotoru:

\[
p_2 = p_1 + \rho \cdot g \cdot (h_1 - h_2) + \frac{\rho}{2} \cdot (v_1^2 - v_2^2) - \Delta p
\]

Pro pohon hydraulických lisů platí, že jak tihový (druhý člen), tak i rychlostní (třetí) člen jsou proti hydrostatickému tlaku \(p_1 \) při výpočtu statické sily zanedbatelné. Pak platí:

\[
p_2 = p_1 - \Delta p
\]

Ztráty v přenosu energie jsou dány úbytkem tlaku \(p \) v důsledku odporu kapaliny proti proudění, objemovými ztrátami kapaliny v důsledku deformací potrubí a válčů, v důsledku stlačitelnosti pracovní kapaliny a v důsledku netěsností.

8.1.2 Základní dělení hydraulických lisů

- **Dle celkového uspořádání**
 a) vertikální konstrukce (s horním nebo spodním pohonem)
 b) horizontální konstrukce

- **Dle použitího pohonu**
 a) přímý pohon
 b) akumulátorový pohon

- **Dle technologického použití**
 a) kovací
 b) tažné
 c) vytlačovací a pro protlačovací
 d) dílenské
 e) razící
 f) na zpracování odpadů
 g) na tváření plastů

- **Dle konstrukce rámu**
 a) uzavřený „O“ rámem
 b) otevřený „C“ rámem

- **Dle technologie**
 a) objemové tváření
 b) vytačování
 c) plošné tváření
 d) montážní a rovnací
 e) zpracování kovových třísek, odpadů a prášků

8.1.3 Technologické zdůvodnění používání hydraulických lisů

- **Možnost dosažení konstantní pracovní síly po celém zdvihu výstupního členu**
- **Možnost dosažení vysokých pracovních sil (až stovky MN)**
- **Možnost plynulé regulace rychlosti výstupního členu v průběhu zdvihu**

Tabulka 6 Příklad rychlostí hydraulického lisu

<table>
<thead>
<tr>
<th>Rychlost pracovní (tváření)</th>
<th>cca (0.02 \div 0.4 , m \cdot s^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rychlost přejížděcí</td>
<td>cca (0.6 \div 1 , m \cdot s^{-1})</td>
</tr>
<tr>
<td>Rychlost zpětná</td>
<td>cca (0.4 \div 1 , m \cdot s^{-1})</td>
</tr>
</tbody>
</table>

- **Možnost regulace velikosti zdvihu v libovolném místě celkového zdvihu, tím je eliminována velikost deformace pracovního prostoru lisu. Není proto nutná tak vysoká tuhost stroje jako u klikových lisů.**
• Možnost automatizace celého pracovního cyklu. Možnost elektronicky řízené regulace velikostí tlaků a průtoků v kterémkoliv okamžiku – integrated electronic control. Maximální zjednodušení hydraulického systému použitím řízeného hydrogenerátoru a řídící elektronické karty.
• S použitím moderních hydraulických systémů možnost zvyšovat počet zdvihů. U kovacích lisů je možné dosáhnout počet zdvihů cca 80 – 120 1 − min (hodnota běžná u klikových lisů).
• Možnost řízení vyrovnání naklopení pohyblivé traverzy.
• Snadná reverzace výstupního členu.
• Nížší tuhost než u mechanických lisů.
• Nízká hlucnost provozu.
• Velká životnost stroje a jeho snadná údržba (výměna těsnění popřípadě vedení).
• Široká technologická použitelnost.

8.1.4 Základní technické parametry hydraulického lisu
Demonstrováno na kovacím lisu CKV.

F_j	Jmenovitá síla lisu	Dána průměrem pracovního plunžru/ů a velikostí provozního tlaku kapaliny
F_{zp}	Zpětná síla	Obvykle $F_{zp} = (0,05 ÷ 0,15) \cdot F_j$
p	Maximální tlak provozní kapaliny	
Z	Zdvih	Největší možná dráha pohyblivé traverzy
H	Otevření lisu	Největší možná vzdálenost upínacích ploch
B,B_1	Průchod	Nejmenší vzdálenost vnitřních ploch sloupů nebo stěn stojanů v podélné nebo příčné ose lisu
C,D	Rozteč sloupů	Vzdálenost os sloupů v podélném nebo příčném směru
S	Délka	Největší rozměr lisu z leva doprava
L	Šířka	Největší rozměr lisu zepředu dozadu
V	Výška lisu nad podlahou	
V_1	Výška lisu nebo jeho zařízení pod úrovní podlahy	
V_2	Hloubka základu	
I_1,I_1	Půdorysné rozměry základu lisu v podélné ose lisu	
J_1,J_1	Půdorysné rozměry základu lisu v příčné ose lisu	
8.2 Hydraulické lisy kovací
Hydraulické lisy kovací dále dělíme na:
a) pro volné kování
b) pro zápustkové kování
Obrázek 89 Schéma vertikálního provedení hydraulického lisu s horním pohonem (vlevo) a čtyřsloupový hydraulický kovací lis s horním pohonem TS Plzeň a.s. (vpravo) (30)

Obrázek 90 Schéma vertikálního provedení hydraulického lisu se spodním pohonem (vlevo) a dvousloupový hydraulický kovací lis se spodním pohonem ŽDAS a.s. (vpravo) (31)
8.2.1 Zařízení pro zpětný zdvih pohyblivé traverzy lisu CKV

8.3 Hydraulické lisy vytlačovací

Možné dělení dle jejich konstrukčního řešení:

a) horizontální
 - dvousloupové
 - třísloupové (do "A" nebo do "V")
 - čtyřsloupové

b) vertikální

Tyto lisy mohou být konstruovány jak pro přímé tak pro nepřímé vytlačování.
8.3.1 Lisy pro přímé vytlačování

Žhavý materiál se vloží do kontejneru a za ním se vloží lisovací podložka. Lisovacím razníkem se následně materiál napěchuje tak, až zaplní prostor kontejneru. Po zaplnění kontejneru děrovací trn proděruje napěchovaný materiál a zastaví se před matricí. V dalším trn stojí a razník se pohybuje dopředu, čímž před sebou vytlačuje materiál. Vzniká dutý profil kalibrovaný děrovacím trnem a matricí.

Obrázek 93 Hydraulický horizontální vytlačovací lis pro přímé vytlačování

Obrázek 94 Schéma přímého vytlačování

Obrázek 95 Schéma přímého vytlačování dutého profilu
8.3.2 Lisy pro nepřímé vytlačování

Pracovní plunžr tlačí na zátku kontejneru a tím tlačí kontejner s materiálem na matrici, která je umístěna na lisovacím trnu. Materiál je nabírán matricí opřenou o dutý razník a vytéká dutým razníkem.
Obrázek 98 Schéma nepřímého vytlacování
Kapitola 9 - Mechanické lisy - klikové
9 Mechanické lisy - klikové

U těchto lisů je síla, která je k dispozici na výstupním členu klikového mechanizmu (beranu lisu) závislá na velikosti jeho zdvihu (na úhlu natočení kliky).

9.1 Konstrukce lisů

Základní rozdělení:

a) podle použitého mechanizmu pro přenos síly
 - klikové lisy
 - jednobodové
 - vícebodové
 - dvoubodové
 - čtyřbodové
 - výstředníkové lisy
 - s podélným uspořádáním výstředníkového hřídele
 - s příčným uspořádáním výstředníkového hřídele
 - kolenové lisy

Obrázek 99 Schématické znázornění mechanizmů pro přenos síly (zleva: klikový lis; výstředníkový lis; kolenový lis)

Obrázek 100 Schématické znázornění beranů lisů (zleva: jednobodový, dvoubodový a čtyřbodový)

b) podle počtu využitelných mechanizmů
 - jednočinné
 - dvojčinné

c) podle velikosti jmenovité síly
 - lehké (do jmenovité síly 0,5 MN)
 - střední (jmenovitá síla od 0,5 do cca 5 MN)
 - těžké (jmenovitá síla větší než cca 5 MN)

d) podle tvaru stojanu
 - jednostojanové otevřené („C“ stojan)
 - dvoustojanové otevřené („CC“ stojan)
 - dvoustojanové uzavřené („O“ stojan)
 - sloupové konstrukce
9.2 **Pohon klikových lisů**

Pro tyto mechanické lisy je příznačné, že:
- zdvih beranu je zcela určitý
- velikost práce, kterou stroj vykoná při jednom pracovním zdvihu, je dána kinetickou energií setrvačníku (v případě setrvačníkového pohonu)
- největší přípustná síla na výstupním členu stroje je dána pevností jednotlivých konstrukčních uzlů zařízení

U těchto mechanických lisů, na rozdíl od bucharu nebo vřetenového lisu kde se využije k tváření polotovaru celá energie pohybujících se hmot, se využije pouze část energie nashromážděné v pohybujícím se beranu, odpovídající poklesu otáček setrvačníku. Setrvačník je zařazen mezi elektromotor pohonu a klikovou hřídel. Energie se odebrá jen během pracovní části zdvihu beranu, při otočení klikové hřídele o jmenovitý úhel \(\alpha_j \).

Úhel \(\alpha_j \) je závislý na technologickém využívání stroje a pohybuje se v těchto mezích (23):

- Svislé a vodorovné kovací lisy \(\alpha_j \sim 5 \div 7^\circ \)
- Výšetřníkové lisy (přes 1,6 MN) \(\alpha_j \sim 20^\circ \)
- Výšetřníkové lisy (do 1,6 MN) \(\alpha_j \sim 30^\circ \)
- Univerzální lisy \(\alpha_j \sim 20 \div 30^\circ \)
- Tažné lisy \(\alpha_j \sim 45 \div 90^\circ \)
- Tabulové nůžky \(\alpha_j \sim 120 \div 135^\circ \)

Práce předaná setrvačníkem při poklesu otáček bude:

\[
A = \frac{1}{2} \cdot J \cdot (\omega_1^2 - \omega_2^2) = \frac{1}{2} \cdot \frac{4 \cdot \pi^2}{60^2} \cdot (n_1^2 - n_2^2) = \frac{\pi^2}{60^2} \cdot m \cdot R^2 \cdot (n_1^2 - n_2^2)
\]

\(J \) - hmotový moment setrvačnosti setrvačníku \([kg \cdot m^2]\)
\[n_1 \] - otáčky setrvačníku při dosednutí výstupního členu zařízení na tvářený kus \([min^{-1}]\)
\[n_2 \] - otáčky setrvačníku po vykonání pracovního zdvihu (po dokončení tváření) \([min^{-1}]\)
\[R \] - poloměr setrvačníku \([m]\)

Z výše uvedeného vztahu je patrné, že při určitém setrvačníku (poloměr „\(R\)“ a jeho hmotnost „\(m\)“ jsou konstantní) je práce závislá na rozdílu kvadrátů otáček před a po pracovním zdvihu.

Pokles úhlové rychlosti setrvačníku závisí na povoleném poklesu otáček elektromotoru, na čase pro dobití energie do setrvačníku, tedy na čase cyklu.

Poměrný pokles úhlové rychlosti:
\[\delta = \frac{\omega_1 - \omega_2}{\omega_1} \cdot 100 \]

Poměrný pokles úhlové rychlosti se pohybuje v těchto mezích (23):
- Tvářecí automaty \(\delta \sim 2 \div 8 \% \) \(t_{cyklu} \sim t_{zdvihu} \)
- Výstředníkové, tažné lisy \(\delta \sim 10 \div 15 \% \) \(t_{cyklu} \sim (1,5 \div 3) t_{zdvihu} \)
- Kovací lisy \(\delta \sim 20 \div 25 \% \) \(t_{cyklu} \sim (4 \div 6) t_{zdvihu} \)

Rychlost, při které se výstupní člen dotkne tvářeného materiálu, je závislá na tom, jaké části zdvihu použijeme pro práci. Ke konci zdvihu klesne rychlost na nulu. U kovacích lisů je tato dosedací rychlost cca 0,6 ÷ 1,2 \([m \cdot s^{-1}]\).

9.2.1 Řešení klikového mechanizmu s nekonečně dlouhou ojnicí
Nejsnazším řešením klikového mechanizmus je klikový mechanizmus s nekonečně dlouhou ojnicí (ojnice brána jako nekonečně dlouhá vůči klice mechanizmu):

\[h = r \cdot \cos \alpha \]

Rychlost beranu lisu:
\[v = \frac{dh}{dt} = r \cdot \omega \cdot \sin \alpha \]

Zrychlení beranu lisu:
\[a = \frac{dv}{dt} = r \cdot \omega^2 \cdot \cos \alpha \]

Převodová funkce:
\[\frac{dh}{d\alpha} = r \cdot \sin \alpha \]

Potom, na základě výše uvedeného, vztah mezi pracovní silou na beranu lisu a momentem na klice klikového mechanismu bude:
\[M \cdot d\alpha = F \cdot dh \rightarrow M = F \cdot \frac{dh}{d\alpha} \rightarrow M = F \cdot r \cdot \sin \alpha \]

9.2.2 Kinematika klikového mechanizmu

Jedním z nejvíce rozšířeným pohonným mechanizmem mechanických lisů je klikový mechanizmus. Tento mechanizmus převádí rotační pohyb klikového hřídele od motoru na posuvný pohyb výstupního členu lisu (beranu, traverzy).

Klikový mechanizmus:

\[
\begin{align*}
H &= 2r \\
HÚ &= H \\
DÚ &= l
\end{align*}
\]

Kde
- \(r \) – poloměr kliky [m]
- \(l \) – délka ojnice [m]
- \(h \) – obecný zdvih [m]
- \(\alpha \) – úhel natočení kliky měřený od DÚ [°]
- \(\beta \) – úhel odklonu ojnice [°]

Je definován tzv. klikový poměr \(\lambda \) – charakteristický bezrozměrný parametr klikového mechanismu, který je dán jako:
\[\lambda = \frac{r}{l} \]

Klikový poměr \(\lambda \) se pohybuje v následujících mezích (32):
- Univerzální klikové a výstředníkové lisy (střední zdvihy) \(0,08 \div 0,14 \)
- Univerzální klikové a výstředníkové lisy (dlouhé zdvihy) \(0,15 \div 0,2 \)
- Tažné lisy \(0,18 \div 0,3 \)
Výpočet je možno provést zjednodušeně bez uvažování pasivních odporů, nebo přesněji s jejich uvažováním.

Zdvihová funkce klikového mechanismu

\[h = f(\alpha) \]

Zdvihová funkce je stanovena z geometrie klikového mechanismu:

\[h = r + l - (r \cdot \cos \alpha + l \cdot \sin \beta) \]

Aby platilo \(h = f(\alpha) \), je nutné odstranit úhel odklonu ojnice. Z geometrie mechanizmu platí:

\[r \cdot \sin \alpha = l \cdot \sin \beta \quad \Rightarrow \quad \sin \beta = \frac{r \cdot \sin \alpha}{l} \quad \Rightarrow \quad \cos \beta = \sqrt{1 - \left(\frac{r}{l}\right)^2 \cdot \sin^2 \alpha} \]

Výraz s odmocninou lze s dostatečnou přesností nahradit prvními dvěma členy Binomické věty:

\[\cos \beta = 1 - \left(\frac{r}{l}\right)^2 \cdot \sin^2 \alpha \]

Potom bude výsledný vztah pro zdvihovou funkci klikového mechanismu:

\[h = r \cdot \left(1 - \cos \alpha + \lambda \cdot \frac{\sin^2 \alpha}{2}\right) \]

Následně je možno vyjádřit obecnou rychlost a zrychlení na beranu (derivací zdvihové funkce).

\[v = r \cdot \omega \cdot \left(\sin \alpha + \frac{\lambda}{2} \cdot \sin 2\alpha\right) \]
\[a = r \cdot \omega^2 \cdot \left(\cos \alpha + \lambda \cdot \cos 2\alpha\right) \]

Protože poměr \(r/l \) je obvykle velmi malý (neboli \(\lambda \to 0 \)) je možno při přibližném výpočtu níže uvedený výraz položit rovný nule. Výše uvedené vztahy pro dráhu, rychlost a zrychlení můžeme zjednodušit:

\[h \approx r \cdot (1 - \cos \alpha) \]
\[v \approx r \cdot \omega \cdot \sin \alpha \]
\[a \approx r \cdot \omega^2 \cdot \cos \alpha \]
Derivací zdvihové funkce podle úhlu natočení kliky obdržíme převodovou funkci.

\[i(\alpha) = \frac{dh}{d\alpha} = r \cdot \left(\sin \alpha + \frac{\lambda}{2} \cdot 2 \cdot \sin \alpha \cdot \cos \alpha \right) = r \cdot \left(\sin \alpha + \frac{\lambda}{2} \cdot \sin 2\alpha \right) \]
9.2.3 Rozklad sil na klikovém mechanismu bez uvažování pasivních odporů

Kde F - pracovní síla
F_o - osová síla v ojnici
F_v - síla působící do vedení
F_t - tečná síla na klíce
M - moment na klikové hřídeli
r - poloměr klíky
l - délka ojnice
α - úhel natočení klíky před spodní úvratí
β - úhel odklonu ojnice

Velikosti jednotlivých sil na klikovém mechanizmu

Na klíce mechanizmu platí:

$$F_o = \frac{F_t}{\sin(\alpha + \beta)}$$

Z rovnováhy sil na beranu lisu platí:

$$F = F_o \cdot \cos \beta \rightarrow \frac{F_t \cdot \cos \beta}{\sin(\alpha + \beta)}$$

$$F_t = \frac{F \cdot \sin(\alpha + \beta)}{\cos \beta} = \frac{F \cdot (\sin \alpha \cdot \cos \beta + \cos \alpha \cdot \sin \beta)}{\cos \beta} = F \cdot (\sin \alpha + \cos \alpha \cdot \tan \beta)$$

U většiny lisů platí, že $\sin \alpha \gg \cos \alpha \cdot \tan \beta$, proto je možno pro informativní výpočet velikosti tečné síly na klíce klikového mechanizmu použít vztahu:
\[F_t = F \cdot \sin \alpha \]

Potom moment na klice bude:
\[M = F_t \cdot r \]

Vztah mezi momentem na klice a pracovní silou na výstupním členu klikového mechanizmu obdržíme z rovnosti diferenciálních prací na klice a beranu mechanizmu. Toto je proveditelné pro menší počty zdvihů, kdy je možno zanedbat vliv dynamických sil a momentů. Potom při konstantním točivém momentu na klice klikového mechanizmu bude síla ne beranu funkcí převodu:

\[F \cdot dh = M \cdot da \]

\[F = M \cdot \frac{da}{dh} \rightarrow F = \frac{M}{r \cdot \left(\sin \alpha + \frac{\lambda}{2} \cdot \sin 2\alpha \right)} = \text{převodová funkce} \]

Obrázek 107 Diferenciální natočení kliky vyvolá diferenciální posuv beranu klikového mechanizmu

Z tohoto vztahu je možno vyjádřit velikost momentu na klice klikového mechanizmu bez uvažování pasivních odporů:
\[M = F \cdot r \cdot \left(\sin \alpha + \frac{\lambda}{2} \cdot \sin 2\alpha \right) \]

Z výše uvedeného je možné sestrojit závěsnou charakteristiku klikového mechanizmu, tj. grafickou závislost síly pohonu na výstupním členu klikového mechanizmu (na beranu lisu) v závislosti na úhlu natočení kliky.
Průběh síly na beranu lisu při konstantním momentu (Obrázek 108) určuje silovou využitelnost klikového pohonu lisu, kde technologický průběh síly nesmí křivku překročit. V případě překročení je pohon přetěžován.

První možností přetížení lisu je přetížení silou. Takový stav nastává v případě, že je lisem vyvozena technologická síla vyšší, než je jmenovitá síla lisu, přestože síla leží pod křivkou danou konstantním momentem. Tento stav může nastat například vložením chladnějšího (než uvažovaného) polotovaru do zápustky. Pohon stroje takovou silu bez obtíží vyvodí, proto je nutno jej chránit například pomocí hydraulické pojistky umístěné mezi ojnicí a beranem lisu.

Další možností je přetížení momentem. Takový stav nastává v případě, že je překročena křivka daná konstantním momentem, přestože nemusí být překročena jmenovitá síla lisu. Tento stav může nastat nevhodnou volbou technologie, nebo nastavením stroje. Pohon stroje takovou silu bez obtíží vyvodí (vyvodí vyšší moment), proto je nutno jej chránit například pomocí kluzné spojky umístěné mezi klikové hřídeli.

Poslední možností je přetížení prací. Takový stav nastává v případě, že je technologií využita větší práce, než pro jakou je stroj navržen, přestože nemusí být překročena jmenovitá síla lisu ani překročena křivka daná konstantním momentem. Tento stav může nastat nevhodnou volbou technologie. Pohon stroje takovou práci bez obtíží přenese,
proto je nutno jej chránit například kontrolou zabudovanou do řídícího systému stroje.

9.2.4 Rozklad sil na klikovém mechanizmu s uvažováním pasivních odporů

Kde

\[F - \text{pracovní síla} \]
\[F_o - \text{osová síla v ojníci} \]
\[F_v - \text{síla působící do vedení} \]
\[F_t - \text{tečná síla na klice} \]
\[M - \text{moment na klikové hřídeli} \]
\[r - \text{poloměr kliky} \]
\[l - \text{délka ojníce} \]
\[\alpha - \text{úhel natočení kliky před spodní úvratí} \]
\[\beta - \text{úhel odklonu ojníce} \]
\[\gamma - \text{odklon nositelky síly v ojníci} \]
\[\varphi - \text{třetí úhel (vedení beranu)} \]
\[\rho_A - \text{poloměr třetí kružnice v čepu beranu} \]
\[\rho_B - \text{poloměr třetí kružnice v čepu kliky} \]

Velikosti jednotlivých sil na klikovém mechanizmu

Pro odklon nositelky síly v ojníci platí:

\[\gamma = \arcsin \left(\frac{\rho_A + \rho_B}{l} \right) \]

Na klice mechanizmu platí:

\[F_o = \frac{F_t}{\sin(\alpha + \beta + \gamma)} \]
Z rovnováhy sil na beranu lisu platí:

\[F = F_o \cdot \frac{\cos(\beta + \gamma + \phi)}{\cos \phi} \]

9.3 VÝSTŘEDNÍKOVÉ LISY

Výstředníkové lisy je možno použít na technologické operace mělké tažení, ohýbání, stříhání, protlačování a ražení. Výstředníkové lisy středních velikostí jsou vhodné pro ostřihování výkovků.

K přenosu síly od pohonu je použito výstředníkového mechanizmu, tj. výstředníkové hřídele, ojnice a beranu. Ojnice je relativně krátká a celistvá. Zdvih beranu je nastavitelný pomocí natáčení výstředníkového pouzdra.

Podle umístění pohonu:
- výstředníkové lisy s horním pohonem
- výstředníkové lisy se spodním pohonem
Obrázek 112 Výstředníkový lis se spodním pohonem a přičně uspořádaným výstředníkovým hřídelem

Obrázek 113 Kinematická schémata pohonu lisů (vlevo: standardní pohon s akumulátorem energie (setrvačníkem) a vpravo: přímý pohon momentovým motorem)

9.4 KLIKOVÉ LISY

K přenosu síly od pohonu na tvářený materiál je použit klikový mechanizmus. Klikové lisy jsou určeny pro stříhání, ohýbání, mělké tažení, protlačování za studena a za tepla, ražení, kování a ostřihování.

V porovnání z výstředníkovými lisy mají konstantní zdvih beranu.

Obvyklé konstrukční provedení: elektromotorem je přes klínové řemeny poháněn setrvačník s vestavěnou spojkou a dále přes ozubené převody klikový hřídel (klikové kolo) klikového mechanizmu.
Spojka se používá především lamelová třecí pneumaticky ovládaná.
Brzda obyčejně lamelová třecí, vodou chlazená, jejíž činnost je spřažena s činností spojky.
Změnou poloměru klikového hřídele a počtu zubů klikového kola se docílí požadovaných velikostí lisu a požadovaného počtu zdvihů beranu.
10 Reference

Poděkování

Investice do rozvoje vzdělávání.

Tato skripta jsou spolufinancována Evropským sociálním fondem a státním rozpočtem České republiky v rámci projektu č. CZ.1.07/2.2.00/28.0206 „Inovace výuky podpořená praxí“.

Tato skripta jsou spolufinancována Evropským sociálním fondem a státním rozpočtem České republiky.