Přejít k obsahu


Regional determination of gravity disturbances by inverting satellite gravitational gradients

Citace:
PITOŇÁK, M., ŠPRLÁK, M., NOVÁK, P., TENZER, R. Regional determination of gravity disturbances by inverting satellite gravitational gradients. Thessaloniki, 2016.
Druh: PŘEDNÁŠKA, POSTER
Jazyk publikace: eng
Anglický název: Regional determination of gravity disturbances by inverting satellite gravitational gradients
Rok vydání: 2016
Místo konání: Thessaloniki
Autoři: Ing. Martin Pitoňák Ph.D. , Ing. Michal Šprlák Ph.D. , Prof. Ing. Pavel Novák Ph.D. , Ing. Robert Tenzer Ph.D. ,
Abstrakt EN: Several methods exist for reducing the distant-zone effect of the Earth's gravitational field. In this article we apply three of them for solving an inverse problem. We discuss a regional recovery of gravity disturbances at the mean geocentric sphere approximating the Earth over the area of Central Europe from satellite gravitational gradients. For this purpose, we derive integral formulas which allow converting the gravity disturbances onto the disturbing gravitational gradients in local north-oriented frame (LNOF). The derived formulas are free of singularities in case of r is not equal to R. We then investigate three numerical approaches for solving their inverses. In the initial approach, the integral formulas are firstly modified for solving individually the near- and distant-zone contributions. While the effect of the near-zone gravitational gradients is solved as an inverse problem, the effect of the distant-zone gravitational gradients is computed by numerical integration from a global equiangular grid synthesized from the global gravitational model (GGM) TIM-r4. In the second approach, we further elaborate the first scenario by reducing measured gravitational gradients for gravitational effects of topographic masses. In the third approach, we apply additional modification by reducing gravitational gradients for the reference GGM. In all approaches we determine the gravity disturbances from each of the four well-measured gravitational gradients separately as well as from their combination. Our regional gravity field solutions are based on the GOCE EGG TRF 2 gravitational gradients collected within the period from November 1 2009 until January 11 2010. Obtained results are compared with EGM2008, DIR-r1, TIM-r1 and SPW-r1. The best fit, in terms of RMS (2.287 mGal), is achieved for EGM2008 while using a third approach which combine all four well-measured gravitational gradients.
Klíčová slova

Zpět

Patička